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The purpose of this note is to present in detail a mathematical study of a truncated normal form
relevant to the bifurcations observed in axisymmetric wakes, in particular, a disk and a sphere. We
employ abstract normal form analysis to identify possible bifurcations and the corresponding bifur-
cation diagrams in parameter space. The bifurcations and the bifurcation diagrams are interpreted
in terms of symmetry considerations. Particular emphasis is placed on the presence of attracting
robust homoclinic and heteroclinic cycles in certain parameter regimes. The normal form coefficients
are computed for several examples of wake flows and the resulting predictions compared with the
results of direct numerical flow simulations. In general, satisfactory agreement is obtained.

I. INTRODUCTION

We consider the interaction between a steady state bi-
furcation and Hopf bifurcation in a system with O(2)
symmetry when both modes have the same wavenumber.
This situation arises naturally in some problems in fluid
dynamics, for example, Taylor–Couette flow (TCF), wake
flow of axisymmetric objects (WFA) and the wake of ax-
isymmetric objects in mixed convection (WFA-MC). Gol-
ubitsky and collaborators [1, 2] investigated solutions of
this problem (called here pure modes and mixed modes)
and explored the possible secondary bifurcations. How-
ever, they do not provide a systematic study of the prob-
lem and many details are left to the reader. The purpose
of this note is to reproduce these results and to explain
how they can be applied to the TFC, WFA, and WFA-
MC problems. Our method differs from that of Golubit-
sky et al. [1, 2] in several aspects:

• The study is restricted to a truncated problem
where only third-order nonlinearities are consid-
ered.

• Two systems are introduced: a polar coordinate
representation which eliminates the two continu-
ous symmetries of the system and a second system
written in its natural Hilbert basis which reduces
the dynamics to its fundamental domain. These
techniques, when systematically employed, reduce
the six-dimensional system to a four-dimensional
one and reduce the fixed-point solutions to a single
representative of each group orbit.

• The amplification rates λs and λh of the two pri-
mary modes are included explicitly in the unfolding
of the problem. Golubitsky et al. considered the
amplification rates as unspecified functions of a sin-
gle control parameter.

Our method is thus much more in line with that used
by Hirschberg & Knobloch [3, 4] for the related problem
of interaction of two steady-state modes with O(2) sym-
metry. There are strong similarities between these two
situations, as emphasized in what follows.

The paper is organized as follows. Section II presents
the normal form and introduces a reduction to polar co-
ordinates, which is used in what follows. Section III pro-
poses a general nomenclature for the various solutions of
the problem. Section IV reviews the fixed-point solutions
of the normal form: pure modes, mixed modes, and pos-
sible bifurcations of higher order. Section V considers a
degenerate case in which a number of details can be in-
vestigated analytically. Section VI presents a numerical
exploration of various solutions of the truncated prob-
lem. Next, section VII explains how the various results
can be used to construct consistent stability diagrams,
while section VIII applies these results to flow past a fixed
axisymmetric object, in particular, a disk and a sphere.
The paper concludes with a brief discussion in Section
IX. Some background to the techniques we use and their
application to problems arising in fluid mechanics may
be found in [5].

II. NORMAL FORM AND REDUCTION TO
AMPLITUDE EQUATIONS

A. Problem parametrization

The flow state q = [u, p] is specified by the velocity
field u and the hydrodynamic pressure p (the WFA-MC
also includes the temperature field T ). Near the mode
interaction (a codimension-two bifurcation) the flow state
takes the form

q = Q0 +Re
[
a0(t)e

−iθq̂s

]
+ Re

[
a1(t)e

−iθq̂h,−1 + a2(t)e
iθq̂h,1

]
+ h.o.t.

(1)

Here Q0 is the steady-state flow state that is invariant
under the action of the whole O(2) group, q̂s is the steady
mode and q̂h is the Hopf (unsteady) mode. The Ansatz
in eq. (1) takes into account the continuous (translation
or rotation) symmetry via the terms e±iθ, where θ ∈ S1

is an angle-like variable in the periodicity direction; for
axisymmetric problems it corresponds to the azimuthal
angle, while in the TCF it corresponds to the axial di-
rection: θ ≡ −2πx/Λ, where Λ is the mode wavelength.
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Here without loss of generality the azimuthal wavenum-
ber m is taken to be m = 1. Both the steady-state flow
and the eigenmodes are functions of other spatial vari-
ables (radial distance and azimuthal angle for the TFC;
radial and axial distances for axisymmetric wake prob-
lems), but this dependence is not of importance here.

In the following we shall be interested in the dynamics
arising from the interaction between the amplitude a0 of
the steady mode and the amplitudes a1, a2 of the left and
right-traveling waves associated with the Hopf mode. All
three amplitudes are in general complex functions of the
time t and their behavior near the mode interaction is
described by normal form theory.

B. Universal normal form

The normal form is obtained in a standard way: pro-
vided the original system of equations is Γ-equivariant
under the group Γ ≡ O(2) × S1, the normal form must
also be Γ-equivariant. The Hilbert–Weyl and Poénaru
theorems, stated in [1, Ch 1], ensure the existence of
a finite set of Γ-equivariant polynomials generating the
Γ-equivariant Taylor expansion (at the origin) of any
smooth mapping. The group Γ acts on C3 which de-
composes into irreducibles C ⊕ C2 corresponding to the
steady and Hopf modes. The action of the group Γ is
generated by rotations Rα, reflection κ, and the tem-
poral phase shift Φ of the Hopf mode. The canonical
representation of these actions is as follows:

Rα : (a0, a1, a2) →
(
a0e

iα, a1e
iα, a2e

−iα
)

Φ : (a0, a1, a2) →
(
a0, a1e

iϕ, a2e
iϕ
)

κ : (a0, a1, a2) →
(
a0, a2, a1

)
.

(2)

Based on these considerations, Golubitsky et al. [1, 2]
show that the resulting normal form can be written as
follows:ȧ0ȧ1
ȧ2

 =
(
c1 + iδc2

)a00
0

 +
(
c3 + iδc4

)a0a1a20
0


+
(
p1 + iq1

) 0
a1
a2

 +
(
p2 + iq2

)
δ

 0
a1
−a2


+
(
p3 + iq3

) 0
a20a2
a20a1

 +
(
p4 + iq4

)
δ

 0
a20a2
−a20a1

 ,

(3)
where δ ≡ |a2|2 − |a1|2, and the 12 real quantities ci, pi

and qi, i = 1, 2, 3, 4, are functions of the control param-
eters and of the five generators of the ring of invariant
polynomials under the action of the group Γ:

ρ ≡ |a0|2, N ≡ |a1|2 + |a2|2, ∆ ≡
(
|a2|2 − |a1|2

)2
,

η ≡ Re
(
a20a1a2

)
, ξ ≡

(
|a2|2 − |a1|2

)
Im

(
a20a1a2

)
. (4)

C. Normal form in polar coordinates

Using the polar representation of the complex ampli-
tudes aj = rje

iϕj for j = 0, 1, 2, eq. (3) can be reduced
to a system of four coupled equations governing the am-
plitudes r0, r1, r2 and the phase Ψ ≡ ϕ1 − ϕ2 − 2ϕ0:

ṙ0 =
[
c1 + c3r1r2 cosΨ− c4δ sinΨ

]
r0

ṙ1 =
[
p1 + δp2

]
r1

+
[(
p3 + δp4

)
cosΨ +

(
q3 + δq4

)
sinΨ

]
r20r2

ṙ2 =
[
p1 − δp2

]
r2

+
[(
p3 − δp4

)
cosΨ−

(
q3 − δq4

)
sinΨ

]
r20r1

Ψ̇ = 2
(
q2δ − c2δ − c3 sinΨ− c4δ cosΨ

)
+

r20
r1r2

[(
q3 +Nq4

)
cosΨ−

(
Np3 +∆p4

)
sinΨ

]
.

(5)
Note that this system is four-dimensional due to the

two continuous symmetries of the system (3). Invariance
under the action of the phase shift Φ reduces the three
angle-like variables (ϕ0, ϕ1, ϕ2) to two (ϕ0, ϕ1 − ϕ2); in-
variance under the rotations Rα then leads to the single
phase Ψ.
The polar system is equivariant under the action of the

group Γρ which is isomorphic to the Pauli group Γρ ≃
D4 ⋊ Z2, where the symbol ⋊ indicates the semi-direct
product between groups. The generators of the group
are the reflection κ and Rπ/2Φπ/2, the discrete rotation
through π/2 with an equal time shift. For the sake of
conciseness, let us introduce the action of the following
group elements on the polar vector field:

κ :
(
r0, r1, r2,Ψ

)
→

(
r0, r2, r1,−Ψ

)
Rπ/2Φπ/2 :

(
r0, r1, r2,Ψ

)
→

(
r0,−r1, r2,Ψ+ π

)
RπΦπ :

(
r0, r1, r2,Ψ

)
→

(
− r0, r1, r2,Ψ

)
Rπ/2Φ−π/2

(
r0, r1, r2,Ψ

)
→

(
r0, r1,−r2,Ψ+ π

)
,

(6)

where Rπ/2Φ−π/2 = κ ·
(
Rπ/2Φπ/2

)3 · κ and RπΦπ =

(Rπ/2Φπ/2)
2. In the next section we present a classifica-

tion of the various solutions based on the polar represen-
tation.

D. Group-theoretic considerations

Branching of solutions is determined by the structure
of the isotropy lattice acting on fixed points of the normal
form (3). The isotropy subgroups of solutions that arise
at primary bifurcations correspond to maximal isotropy
subgroups of Γ, that is, isotropy subgroups that are not
included in any other isotropy subgroup other than Γ it-
self. In a similar manner, solutions arising at secondary
bifurcations have isotropy subgroups that are maximal
in a subgroup strictly smaller than Γ. This process con-
tinues until the trivial group is reached, corresponding
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FIG. 1: Lattice of isotropy subgroups of the symmetry
group Γ (resp. Γρ).

to the most general fixed point subspace of the normal
form.

Prior to the introduction of the isotropy lattice of the
normal form (3), let us introduce the following notation
to denote some of the isotropy subgroups of Γ: the group

of rotations S̃O(2),

S̃O(2) ≡ {RϕΦ−ϕ | ϕ ∈ [0, 2π)}, (7a)

and the group Zn(g), a cyclic subgroup generated by the
element g, satisfying gn = Id. The isotropy lattice of the
normal form (3) is represented in fig. 1. In section III
we use the information extracted from this lattice to de-
termine the types of invariant solutions admitted by the
normal form. In addition to the isotropy subgroups of
the complex normal form, table III lists the isotropy sub-
groups of the solutions of the polar system (5).

E. Third order normal form

Here we will not deal with the general case, instead we
consider a truncated form retaining only nonlinearities of
third order. Such a truncated system can be expressed
in the following explicit form:

ȧ0 = λsa0 + l0a0|a0|2 + l1
(
|a1|2 + |a2|2

)
a0

+il2
(
|a2|2 − |a1|2

)
a0 + l3a0a2a1

(8a)

ȧ1 =
(
λh + iωh

)
a1 +

(
B|a1|2 +

(
A+B

)
|a2|2

)
a1

+Ca1|a0|2 +Da20a2
(8b)

ȧ2 =
(
λh + iωh

)
a2 +

(
B|a2|2 +

(
A+B

)
|a1|2

)
a2

+Ca2|a0|2 +Da20a1 ,
(8c)

where l0, l1, l2, l3 are real coefficients and A,B,C,D are
complex coefficients. The correspondence with the no-
tation of Golubitsky et al. [1, 2] is reported in tables I
and II.

The system (8) then corresponds to the polar equations

ṙ0 =
[
λs + l0r

2
0 + l1

(
r21 + r22

)]
r0

+l3r0r1r2 cosΨ
(9a)

ṙ1 =
[
λh +Brr

2
1 + (Ar +Br)r

2
2 + Crr

2
0

]
r1

+r20r2
(
Dr cosΨ +Di sinΨ

) (9b)

ṙ2 =
[
λh +Brr

2
2 + (Ar +Br)r

2
1 + Crr

2
0

]
r2

+r20r1
(
Dr cosΨ−Di sinΨ

) (9c)

Ψ̇ = (Ai − 2l2)(r
2
2 − r21)− 2l3r1r2 sinΨ

+r20Di cosΨ
[r2
r1

− r1
r2

]
− r20Dr sinΨ

[r2
r1

+
r1
r2

]
,

(9d)

Interestingly, the polar system only involves 9 of the
13 original coefficients, namely: l0, l1, l3, Ar, Br, Cr,
Dr, Di and Ai − 2l2. The system (9) is decoupled from
the evolution of the phase ϕ0 and the ”mean phase” of
the Hopf component ϕm = (ϕ1 + ϕ2)/2, which evolve
according to

ϕ̇0 = l2(r
2
2 − r21) + l3r1r2 sinΨ , (10a)

ϕ̇m = ωh +
(
Bi +

1
2Ai

)
(r21 + r22) + Cir

2
0

+
1

2
r20Di cosΨ

[
r2
r1

+
r1
r2

]
+
1

2
r20Di sinΨ

[
r1
r2

− r2
r1

]
.

(10b)

In addition we introduce a system whose coordinates
are invariant under the group action, except for the re-
flection symmetry in Ψ. We do this primarily because
we would like to use the resulting system to study a par-
ticular degenerate case in section V. The advantage of
such a system is that dynamics occur in the ”fundamen-
tal domain”, that is, there is only one representative of
each group orbit. The system is defined in terms of the
invariants

R = r20, S = r21 + r22, P = r1r2, Q = cosΨ . (11)

In term of these coordinates the evolution equations
become

Ṙ = 2
[
λs + l0R+ l1S + l3P

]
R (12a)

TABLE I: Correspondence of the real coefficients of the
normal form (8) with the literature.

λs λh ωh l0 l1 l2 l3
[1, 2] c1µ · µ p1µ · µ q10 c1ρ c1N c20 c30
[6] α0µ+ β0ν α1µ+ β1ν ω0 c0 Re(d0) −Im(d0) f0
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Ṡ = 2
[
λh +BrS + CrR

]
S

+4
[
ArP +DrQR

]
P

(12b)

Ṗ =
[
λh +BrS + CrR

]
P

+4
[
ArP +DrQR

]
S −DiR

√
(1−Q2)(S2 − 4P 2)

(12c)

Q̇ =
[
2l3 +

DrRS
P

]
(1−Q2)

+
[
(Ai − 2l2)− DiRQ

P

]√
(1−Q2)(S2 − 4P 2) .

(12d)
In the study that follows, we take the nonlinear coef-

ficients lj for j = 1, 2, 3, 4, A,B,C,D as well as the fre-
quency ωh of the Hopf mode as constant. The amplifica-
tion rates λs and λh will be used as unfolding parameters.
Our study provides predictions for the existence and sta-
bility of the possible solutions in the (λs, λh) plane. To
apply these results to the flows we are interested in, we
have to specify the dependence of the amplification rates
on the control parameters of the problem. The WFA
problem employs a single control parameter R while the
WFA-MC problem is specified by two control parame-
ters R1 and R2 related to the magnitude of the incoming
velocity and the temperature difference between the ob-
ject and the background, respectively. In this case the
amplification rates can be assumed to have the following
dependence:

λs = αs(R1 −R∗
1) + βs(R2 −R∗

2),
λh = αh(R1 −R∗

1) + βh(R2 −R∗
2) ,

(13)

where R∗
1 and R∗

2 are the threshold values given by the
linear stability analysis of the axisymmetric steady state;
for the WFA problem βs = βh = 0.
In the TCF problem R1, R2 are related to the angular

velocities of the inner and outer cylinders; in the vicinity
of the bicritical (codimension-two) point (R∗

1, R
∗
2) the

amplification rates can be assumed to depend linearly on
the distance to this point:

λs = c1R1
(R1 −R∗

1) + c1R2
(R2 −R∗

2),
λh = p1R1

(R1 −R∗
1) + p1R2

(R2 −R∗
2) .

(14)

Numerical values for (R∗
1, R

∗
2) and for the parameters

c1R1
, c1R2

, p1R1
, p1R2

are tabulated in [2] for several values
of the radius ratio η < 1 (i.e. the ratio of the radii of the
inner and outer cylinders).

TABLE II: Correspondence of the complex coefficients
of the normal form (8) with the literature.

A B C D
[1, 2] 2

(
p20 + iq20

)
(p1N − p20) + i(q1N − q20) p1ρ + iq1ρ p30 + iq30

[6] e1 − d1 d1 c1 f1

III. CLASSIFICATION OF THE SOLUTIONS

The nomenclature used to classify the various solutions
is given in tables III and IV. We describe every possible
solution, although the emphasis will be put on the so-
lutions that arise generically in the third-order problem
and in the degenerate case considered in section V.
To illustrate the various solutions graphically, we

project the four-dimensional phase space into a plane
spanned either by the complex amplitude A(t) or by
A′

j(t) for j = 0, 1, where

A(t) ≡ a0(t) + a1(t) + a2(t),
A′

j(t) ≡ A(t)e−iϕj(t), for j = 0, 1,
(15)

hereafter referred to as the A-projection and the A′-
projection, respectively.
The function A provides a global measure of the dy-

namics of the system and combines contributions from
both the steady and unsteady components. In the wake
problem, the real and imaginary parts of A can be identi-
fied with the leading order contribution to the lift forces
in the y and z directions, respectively. In the TCF prob-
lem they represent, for example, the vorticity levels at
two points located a quarter of a wavelength apart in the
periodicity direction.
The solutions that are stationary in the polar repre-

sentation are summarized in the table III. The simplest
solution is the trivial solution (TS) (a0, a1, a2) = (0, 0, 0).
This solution corresponds to Couette flow in the TCF
problem, and to the axisymmetric solution in the WFA
and WFA-MC problems. In the A-projection this solu-
tion corresponds to the origin (Figure 2a). There are
three primary solutions: steady-state modes (SS), rotat-
ing waves (RW) and standing waves (SW). The steady
state mode (SS) takes the form (a0, 0, 0), a0 ̸= 0. This
state corresponds to the Taylor Vortex state in the TCF
problem and the Steady Shedding mode in the wake prob-
lems. In the A-projection this state is represented by an
off-center point (Figure 2b). As shown in table V and in
fig. 2b using a thin dashed-dotted line there is a circle
of such states related by rotations Rϕ0 ; each state is in
addition reflection-symmetric.

The RW and SW solutions arise in a primary Hopf
bifurcation of the trivial state. Because of O(2) sym-
metry, the eigenvalues at the Hopf bifurcation are dou-
bled, and the Hopf bifurcation produces simultaneously
a branch of rotating waves (RW, (a0, a1, a2) = (0, a1, 0))
and standing waves (SW, (a0, a1, a2) = (0, a1, a1)). The
RW break reflection symmetry; consequently, there are
two RW, rotating in opposite directions and related by
reflection. In contrast, the SW are reflection-symmetric
oscillations with zero mean. In the TCF problem the RW
correspond to the Spiral Vortex state, while in the wake
problem they correspond to the Spiral Shedding state,
observed, for example, in the wake of a rising bubble [7].
In the A-projection the RW state corresponds to a limit
cycle centered at the origin (Figure 2c), while the SW
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TABLE III: Nomenclature and symmetry groups of the steady-state solutions of the system (5).

Name Representative Isotropy group (complex) Isotropy group (polar) Frequencies
Pure modes:

TS (0, 0, 0, nd) O(2)× S1 D4 ⋊ Z2(κ) 0
SS (ra, 0, 0, nd) Z2(κ)× S1 Z2(κ)× Z2(Φπ) 0

RW (0, ra, 0, nd) S̃O(2) Z4(Rπ/2Φπ/2) 1
SW (0, ra, ra, nd) Z2(κ)× Z2(RπΦπ) Z2(κ)× Z2(RπΦπ) 1

Mixed modes:
MM0 (ra, rb, rb, 0) Z2(κ) Z2(κ) 1
MMπ (ra, rb, rb, π) Z2

(
κ ·RπΦπ

)
Z2

(
κ ·RπΦπ

)
1

MW (0, ra, rb,Ψ) Z2(RπΦπ) Z2(RπΦπ) 1
Precessing waves:

General (ra, rb, rc,Ψ) 1 1 2
Type A (ra, rb, rb,Ψ) 1 1 2
Type B (ra, rb, rc, 0 or π) 1 1 2
Type C (ra, rb, 0,Ψ) 1 1 2

Re(A)

Im(A)

(a) TS

Im(A)

Re(A)

(b) SS

Re(A)

Im(A)

(c) RW

Re(A)

Im(A)

(d) SW

FIG. 2: The trivial state (TS) and the primary
branching solutions SS, RW and SW in the complex A

plane.

state is represented by a radial oscillation through the
origin (Figure 2d). In the TCF problem, the SW state
corresponds, respectively, to the Ribbon state and the
Symmetric Periodic Shedding state observed, for exam-
ple, in the wake of a disk when R ≈ 150. As for SS,
there is a circle of SW states related by rotations, see
fig. 2d. Each of these solutions corresponds to a one-
dimensional fixed point subspace spanned either by a0
or a1, and their presence is therefore guaranteed by the
equivariant branching lemma.

Secondary bifurcations may lead to states with a
higher-dimensional fixed point subspace. These states

correspond to the next rung of the lattice of isotropy sub-
groups. An example is provided by mixed mode states
that correspond to a (nonlinear) superposition of the SS
and SW modes. There are two possible states of this
type. The first is denoted by MM0, and corresponds,
respectively, to a pattern called Twisted Vortices in the
TCF problem and to the reflection symmetry-preserving
mode (RSP) in the wake problem. In the A-projection
the solution oscillates back and forth in the radial di-
rection but now with non-zero mean (Figure 3a). The
second mixed mode, MMπ, corresponds, respectively, to
Wavy Vortices in the TCF problem and to the reflec-
tion symmetry-breaking mode (RSB) in the wake prob-
lem. In the A-projection this solution corresponds to a
back-and-forth along a line segment perpendicular to the
radial direction (Figure 3b). The phase ϕ0 of both these
states is arbitrary. In other words, there is a circle of so-
lutions of each type, as indicated in fig. 3a) and fig. 3b).
Finally, one can also find a mixed mode state involving
the Hopf modes, referred to as a modulated wave state
(MW), consisting of a (nonlinear) superposition of two
rotating wave modes. This state is referred to as the
Modulated Spiral mode (MSP) in the TCF problem and
the Modulated Wave mode (MW) in the wake problem.
It is a mode with two temporal frequencies, which are in
general incommensurate, and so corresponds to a 2-torus
as sketched in fig. 3c. This type of solution does not
occur generically in the third-order system, although it
arises in higher order normal forms or in the degenerate
case corresponding to Ar = 0 [8].

The last solution type, that is, a state arising in a
tertiary bifurcation, corresponds to a fixed point in the
(r0, r1, r2,Ψ) coordinates with no further symmetry. Ac-
cording to eq. (10), in such states the phase ϕ0 of the
steady mode generically precesses at a constant rate given
by ϕ̇0. Consequently, states of this type display two
frequencies, one of which is close to the critical Hopf
frequency while the other is a low frequency given by
eq. (10a). Such modes have been called ”modulated ro-
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Im(A)

Re(A)

(a) MM0

Im(A)

Re(A)

(b) MMπ

Im(A)

Re(A)

(c) MW – A-projection

Re(A'1)

Im(A'1)

(d) MW – A′
1-projection

FIG. 3: The secondary states (a) MM0, (b) MMπ and
(c) MW in the complex A plane. (d) The A′-projection

of the MW state.

tating waves” in [2], but here we prefer to avoid the am-
biguous word ”modulated” which has been used to de-
scribe a large variety of very different states in the past.
Instead, these solutions will be referred to as Precessing
Waves (PrW) or ”drifting waves”.

The precession of these states is best appreciated in
the A′-projection, showing the state in a frame of refer-
ence precessing with the steady-state component a0. In
this frame of reference, the PrW is periodic and takes
the form of an ellipse (Figure 4b. Note that in this rep-
resentation the polar coordinates (r0, r1, r2,Ψ) can be in-
terpreted graphically: r0 is the distance of the center of
the ellipse to the origin, (r1 + r2)/2 and (r1 − r2)/2 are
the major and minor axes, and Ψ is twice the angle be-
tween the major axis of the ellipse and the direction of
the steady-state component.

There are in fact four types of PrW as explained in Ta-
ble III. The general solution, PrW General, occurs gener-
ically in the third order normal form and corresponds
to the most general fixed-point solution of eq. (9). In
addition, there are special PrW states. The first two,
called PrW Type A and Type B, do not occur generi-
cally in the third order problem, but they are found in
normal forms of higher order or in the degenerate case
considered in section V. The third solution, PrW Type
C is another degenerate solution that arises in the third
order normal form but only when the three conditions
Ai − 2l2 = Dr = Di = 0 are satisfied.

The solutions that are periodic in the polar represen-
tation are summarized in table IV. We distinguish three
types of solutions. The first type is referred to as a Modu-

Re(A)

Im(A)

(a) A-projection of PrW

Im(A'0)

Re(A'0)

(b) A′
0-projection of PrW

FIG. 4: The tertiary state PrW.

Re(A)

Im(A)

(a) A-projection of M̃Mπ

Re(A'0)

Im(A'0)

(b) A′
0-projection of M̃Mπ

FIG. 5: The Modulated Mixed Mode M̃Mπ in the
complex A plane.

lated Mixed Mode since it displays the same spatial sym-
metries as the mixed modes already described. For ex-
ample, in the A-projection the Modulated Mixed Mode

state M̃Mπ evolves on a 2-torus, whose shape resembles
that of MMπ (Figure 5a). The A′

0-projection (Figure 5b)
yields an identical but rotated picture, indicating that
the phase of the steady-state component remains con-

stant. The related state M̃M0 is not displayed, since its
A-projection is identical to that of the MM0 state. Its
modulus |A|, however, pulsates with two independent fre-
quencies.

We also find periodic states we call Pulsating
Waves (PuW). In such states, the polar coordinates
(r0, r1, r2,Ψ) all oscillate periodically in time, but the
pulsation retains a certain symmetry. Specifically, r1 =
r2 and sinΨ = 0, where the overbar indicates an av-
erage over the pulsation period. According to eq. (10)
the phase ϕ0 of the steady-state component also pulsates
periodically, but the average value of its derivative over
one pulsation period vanishes. Consequently, the pat-
tern does not precess. In the A-projection the solution
evolves on a 2-torus that remains confined within a given
angular sector (Figure 6a), indicating the absence of net
precession. The A′

0-projection (Figure 6b) also reveals a
2-torus, albeit of different form.

The last type of periodic solution corresponds to the
case where the (r0, r1, r2,Ψ) coordinates are once again
all periodic, but the conditions r1 = r2 and sinΨ = 0
are violated. In the A-projection, this state appears ir-
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TABLE IV: Nomenclature and symmetry group of limit cycle solutions of the system (5).

Name Representative Isotropy group Frequencies
of solution in polar coordinates in primitive coordinates

M̃M0,π (ra(t), rb(t), rb(t), 0 or π) 1 2

ĨMM (0, rb, rc,Ψ(t)) 1 2
PuW (ra(t), rb(t), rc(t),Ψ(t)) 1 2

with rb = rc and sinΨ = 0
3-frequency waves: (3FW)

General (ra(t), rb(t), rc(t),Ψ(t)) 1 3
Type A (ra(t), rb(t), rb(t),Ψ(t)) 1 3

with sinΨ ̸= 0
Type B (ra(t), rb(t), rc(t), 0 or π) 1 3

with rb ̸= rc
Type C (0, rb(t), rc(t), nd) 1 3

with rb ̸= rc
Type D (ra(t), rb(t), 0,Ψ(t)) 1 3

with sinΨ ̸= 0

Re(A)

Im(A)

(a) A-projection of PuW

Im(A'0)

Re(A'0)

(b) A′
0-projection of PuW

FIG. 6: The Pulsating Wave PuW in the complex A
plane.

regular (Figure 7a), while the A′
0-projection (Figure 7b)

revels a 2-torus. In fact, this solution actually evolves on
a 3-torus, owing to net drift in the phase ϕ0. We call
these states Three-Frequency Waves (3FW), since they
are characterized by a frequency near the critical Hopf
frequency, the pulsation frequency, and finally the pre-
cession frequency.

The classification of the solutions of the generic steady-
Hopf interaction with O(2) symmetry presented by Gol-
ubitsky et al. [1, 2] and covered in section IID is based
on maximal isotropy subgroups of the symmetry group
O(2) × S1 of the normal form. This technique predicts
the existence up to tertiary bifurcations of fixed points
of the complex normal form 3. These isotropy subgroups
correspond to the symmetries of the solutions within the
fixed point subspace of each isotropy group (cf. table III).
However, several of the states identified here have trivial
symmetry (denoted by 1), and their existence cannot be
established by group-theoretic arguments alone. Thus,
the polar representation introduced here is helpful for the
explicit computations required to establish the presence
of these more complex states.

Re(A)

Im(A)

(a) A-projection of 3FW

Re(A'0)

Im(A'0)

(b) A′
0-projection of 3FW

FIG. 7: The Three-Frequency Wave 3FW in the
complex A plane.

IV. TYPES OF SOLUTIONS

In this section, we describe the various solutions of
the truncated third-order system (8). We summarize
not only the solutions but also their stability properties,
assuming that all necessary non-degeneracy conditions
hold.

A. Pure modes

Table V contains the definition and eigenvalues of the
trivial state and of the pure modes. Since the polar angle
Ψ is undefined for these states, the results are obtained
from the primitive amplitude equations (8). Therefore,
six eigenvalues are listed for each branch. The condition
for supercriticality of the primary branch is also given.
This can be deduced from elementary considerations. For
example, the SS branch is supercritical if l0 < 0, as can
be seen in both the equation for the branch (which is
then defined for λs > 0) and the first non-zero eigenvalue
(which is then negative, implying that stability has been
transferred to the SS branch). The conditions for su-
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TABLE V: Defining equations and eigenvalues of primary branches in the third order normal form (8).

Name of solutions Definition Eigenvalues Notes
(condition for supercriticality)

Pure modes:
TS r0 = r1 = r2 = 0 λs (twice) Bif. to SS

λh ± iωh (twice each) Bif. to SW and RW

SS r0 =
√

−λs
l0

≡ rP 0 Inv. under rotation

l0 < 0 ϕ0 arbritrary 2l0r
2
P Bif. from TS

r1 = r2 = 0 λh + iωh + (C +D)r2P and c.c. Bif. to MM0

λh + iωh + (C −D)r2P and c.c. Bif. to MMπ

SW r1 = r2 =
√

− λh
(2Br+Ar)

≡ rS 0 Inv. under time shift

2Br +Ar < 0 r0 = 0 0 Inv. under rotation
ϕ1 − ϕ2 arbitrary (4Br + 2Ar)r

2
S Bif. from TS

ϕ̇1 = ϕ̇2 = ωh + (2Bi +Ai)r
2
S −2Arr

2
S Bif. to RW

λs + (2l1 + l3)r
2
S Bif. to MM0

λs + (2l1 − l3)r
2
S Bif. to MMπ

RW r1 =
√

− λh
Br

≡ rR 0 Inv. under time shift + rotation

Br < 0 r0 = r2 = 0 2Brr
2
R Bif. from TS

ϕ̇1 = ωh +Bir
2
R Ar2R and c.c. Bif. to SW

λs + (l1 + il2)r
2
R and c.c. Bif. to PrW

percriticality also provide the conditions for the subcrit-
icality (if the corresponding parameter has the opposite
sign) and non-degeneracy (if the corresponding quantity
is non-zero).

The bifurcation at λh = 0 is the standard Hopf bifur-
cation with O(2) symmetry, and so gives rise simultane-
ously to branches of RW and SW. The RW rotate coun-
terclockwise (clockwise) when ωh > 0 (ωh < 0). Reflec-
tion symmetry implies that for each RW (r1, r2) = (r1, 0)
there is also a RW (r1, r2) = (0, r1) rotating in the op-
posite direction. The condition Ar = 0 represents a de-
generacy that is analysed theoretically in [5, 8–10]. In
the vicinity of this degeneracy two-frequency states are
present, and these are analyzed in section IVC2.

B. Mixed modes

The defining equations for the mixed modes are given
in table VI. We differentiate between nondegenerate so-
lutions of the third-order truncated normal form, which
are the Mixed Modes of type MM0,π, and degenerate
solutions, which are the Modulated Wave modes MW.
The nondegeneracy conditions for the existence of MM
branches are ∆± = (2Br+Ar)l0−(2l1±l3)(Cr±Dr) ̸= 0,
with the positive sign for MM0 and the negative sign for
MMπ. Inspection shows that these states bifurcate su-
percritically from the SS branch if ∆±l0 < 0 and from the
SW branch if ∆±(2Br+Ar) < 0. ModulatedWave modes
MW are degenerate solutions of the third order normal
form (9) and exist when Ar = 0 and ∆b = l3 sinΨ ̸= 0.

At this point, it is interesting to point out the similari-
ties between the present problem and the related problem
of the interaction between two steady-state modes with

opposite parity analysed by Hirschberg & Knobloch [3, 4].
The latter problem has two pure modes and two mixed
modes, which are defined by equations similar to those
defining our SS and SW pure modes and mixed modes.
So, if we restrict to the subspace generated by the SS and
SW pure modes, all the results of Hirschberg & Knobloch
[3, 4] can be directly applied to the present case. This is
not so, however, within the system (8), which reveals the
presence of additional secondary bifurcations (see below).

C. Stability of mixed modes and tertiary
bifurcations

Higher order bifurcations can be detected by lineariz-
ing the normal form (8) around the mixed modes in ta-
ble VI. Working with the primitive equations, as done in
Golubitsky et al. [1], leads to the same results, but the
procedure is more involved. Within the polar representa-
tion four eigenvalues need to be computed; the remaining
eigenvalues are both zero owing to the two continuous
symmetries, the invariance of the mixed modes under ro-
tation and time translation.

1. Mixed modes

To obtain the results listed in table VI, consider the
following expansion: r0 = ra+x0, r1 = rb+x1, r2 = rb+
x2 and Ψ = Ψ0 +ψ, with either Ψ0 = 0 for MM0 or Ψ =
π for MMπ; in either case we suppose the perturbation
is infinitesimal, |x0|, |x1, |x2|, |ψ| ≪ 1. In terms of the
quantities ρ = x1−x2 and xM = (x1+x2)/2 the resulting
liner stability problem is block-diagonal:



9

TABLE VI: Defining equations and eigenvalues of mixed modes in the third order normal form (8).

Name of solutions Definition Eigenvalues Notes
(condition for supercriticality)

MM0 r2a = (2l1+l3)λh−(2Br+Ar)λs

∆+
eigs of M+

a Bif. to M̃M0

∆+ ̸= 0 r2b = (Cr+Dr)λs−l0λh
∆+

eigs of M+
b Bif. to PrW and/or PuW

∆+ = (2Br +Ar)l0 − (2l1 + l3)(Cr +Dr)

MMπ r2a = (2l1−l3)λh−(2Br+Ar)λs

∆−
eigs of M−

a Bif. to M̃Mπ

∆− ̸= 0 r2b = (Cr−Dr)λs−l0λh
∆−

eigs of M−
b Bif. to PrW and/or PuW

∆− = (2Br +Ar)l0 − (2l1 − l3)(Cr −Dr)

MW
Ψ±

0
r2a = 1

2

[
− Ar

2Er
−

√
χ

4FrEr

]
λs − l1

Ar
Er

+ l3rarb cosΨ
±
0 Bif. to PrW or 3FW

2Br +Ar < 0, Ar > 0 r2b = 1
2

[
− Ar

2Er
+

√
χ

4FrEr

]
−2l3rarb cos(Ψ

±
0 ) Stability of MWΨ±

Er < 0, Fr < 0 sinΨ±
0 = Ai−2l2

l3

(
χ/(FrEr)

)1/2(
(Ar/Er)2−χ/(FrEr)

)1/2 sinΨ±
0 > 1 Bif. to ĨMM

Existence I: Ar/Er < 0

Existence II: 0 < χ
FrEr

<
A2

r
E2

r
χ = Ar(Ar + 2Br)− 4Erλh

(
ẋ0
ẋM

)
=M±

a

(
x0
xM

)
with

M±
a = 2

(
l0r

2
a (2l1 ± l3)rarb

(Cr ±Dr)rarb (2Br +Ar)r
2
b

)
,

(
ρ̇

ψ̇

)
=M±

b

(
ρ
ψ

)
with

M±
b = 2

(
−Arr

2
b ∓Drr

2
a ±Dir

2
arb

(2l2 −Ai)rb ∓Dir
2
a/rb ∓(Drr

2
a + l3r

2
b )

)
,

(16)
with the upper sign applying to MM0 and the lower one
to MMπ. The matrices M+

a , M+
b , M−

a , M−
b correspond,

respectively, to the matrices denotedM0,M1, N0 and N1

in Golubitsky et al. [1], but are obtained here in a much
more straightforward way. The expressions are identical,
except for the prefactor 2 which is missing in Golubitsky
et al. and an overall change of sign in their matrix M1.

Let us first discuss the situation in the subspace
(x0, xM ), which is governed by the system (16a). This
system is completely analogous to that studied by
Hirschberg & Knobloch [3], since it involves perturba-
tions within the SS/SW invariant subspace of the prob-
lem. In particular, the determinant of the matrix M±

a

(i.e. the product of the eigenvalues) is 4rarb∆±. It fol-
lows that a steady state bifurcation cannot occur along
either mixed mode within the SS/SW subspace. This
fact could have been anticipated by noting that this sub-
space does not admit symmetry-breaking bifurcations of
these states. As a result only Hopf bifurcations are pos-
sible. It follows that the eigenvalues of the matrix M±

a

are either real with constant sign, or complex conjugate
with a possible Hopf bifurcation. Inspection shows that
the situation depends upon the signs of the quantities
l0, 2Br + Ar, and ∆±. If ∆± < 0, both eigenvalues

are real and their product is negative. Therefore, one of
the eigenvalues is stable and the other unstable. This
means that the corresponding branch MM0,π is always
less stable than the primary SS and SW branches. In the
case ∆± > 0, the product of the eigenvalues is positive,
and their sum is given by the trace of the matrix, i.e.
2
(
l0r

2
a + (2Br +Ar)r

2
b

)
. When l0 < 0 and 2Br +Ar < 0,

i.e., when both primary bifurcations are supercritical, the
trace remains negative, indicating that both eigenvalues
are stable along the whole mixed mode branch. Similarly,
when l0 > 0, and 2Br + Ar > 0, i.e. when both primary
bifurcations are subcritical, the trace remains positive,
indicating that both eigenvalues are unstable along the
whole branch. The last possibility, l0(2Br + Ar) < 0,
arises when one of the primary bifurcations is subcrit-
ical while the other is supercritical. In this case, the
real part of the eigenvalues changes sign somewhere along
the branch, signaling the occurrence of a Hopf bifurca-
tion. The solution born at such a Hopf bifurcation is

referred to here as a Modulated Mixed Kode (M̃MΨ0
, see

table IV). The frequency of oscillation of the Modulated
Mixed Mode at the Hopf bifurcation is given by the de-
terminant of the matrix M±

a and may be expressed in
terms of r2a as follows:

ω2
a = − l0∆±

2Br +Ar
r4a . (17)

According to Hirschberg & Knobloch [3], the correspond-
ing bifurcation is degenerate within the third order trun-
cation, and higher order terms are required to determine
whether it is subcritical or supercritical.
Consider now the situation in the (ρ, ψ) subspace, gov-

erned by the system (16b). Inspection shows that the
matrix M±

b may have complex or real eigenvalues. So,
in this subspace, each of the mixed modes can experi-
ence steady bifurcations (associated with the vanishing
of a single eigenvalue of M±

b ) and/or Hopf bifurcations
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(associated with the vanishing of the real part of a pair
of complex eigenvalues of M±

b ). To discuss the nature
of the solutions born at these tertiary bifurcations it is
useful to note that the phase drift ϕ̇0 of the steady mode
component is related to these quantities by the equation

ϕ̇0 = −2l2rbρ± l3r
2
bψ +O(ρ3, ρ2ψ,ψ2ρ, ψ3) , (18)

obtained from eq. (10a).
A steady state bifurcation will generically give rise to

a branch with constant, nonzero (ρ, ψ), and according
to eq. (18) such a state will therefore precess at a con-
stant angular velocity. The corresponding bifurcation
will be referred to as a parity-breaking bifurcation, and
the states produced as Precessing Waves (PrW, see ta-
ble III). On the other hand, a Hopf bifurcation will gener-
ically give rise to a limit cycle in the (ρ, ψ) plane. Since
this cycle is symmetric about (ρ, ψ) = (0, 0), eq. (18)
implies that the resulting state will drift back and forth
with zero net drift. The result is a direction-reversing
wave [11] and we refer here to states of this type as Pul-
sating Waves (PuW, see table IV).

These predictions are in agreement with those of Gol-
ubitsky et al. except for their expectation that the
symmetry-breaking Hopf bifurcation (i.e. the Hopf bifur-
cation in the (ρ, ψ) subspace) gives rise to a 3-frequency
state. We see that while the bifurcation is indeed associ-
ated with translations of the pattern and hence motion
along a three-torus, this motion is in fact a two-frequency
motion (in the original variables).

The eigenvalues of the matrix M±
b solve a quadratic

equation which cannot be simplified easily, and generally
has to be investigated on a case-by-case basis. However,
it is instructive to consider the situation in the vicinity
of the bifurcation points of the mixed modes from the
pure modes. In the vicinity of the bifurcation from the
SS mode one has rb ≪ ra, and the eigenvalues ofM±

b are,

at leading order, (∓2Dr2a,∓Dr2a). Thus, if Dr > 0 (resp.
Dr < 0), the MM0 is more (resp. less) stable than the
MMπ mode in the vicinity of the bifurcation from the SS
mode. Similarly, near the bifurcation from the SW mode,
the requirement ra ≪ rb shows that the eigenvalues of
M±

b are, at leading order, (−2Arr
2
b ,∓2l3r

2
b ). The first

eigenvalue indicates stability for both MM0 and MMπ

modes provided Ar > 0. Recall that the parameter Ar

also determines if the SW branch is more or less stable
than the RW branch. Thus, the mixed modes inherit
this property from the SW branch in the vicinity of the
bifurcation point. The second eigenvalue likewise implies
that if l3 > 0 (resp. l3 < 0), the MM0 is more (resp. less)
stable than the MMπ in the vicinity of the bifurcation
from the SW mode.

2. Modulated wave mode

The modulated wave mode is a degenerate solution of
the normal form (8) truncated at third order. This type

of pattern requires the degeneracy condition Ar = 0 in
order to exist, although it exists under weaker assump-
tions in the general normal form (5).
To resolve this indeterminacy, we return to the general

polar normal form (5). The existence of the MW solution
is subject to the following conditions

p1(0, r21 + r22, (r
2
2 − r21)

2, 0, 0, λ) ≡ 0
p2(0, r21 + r22, (r

2
2 − r21)

2, 0, 0, λ) ≡ 0 .
(19)

Hill and Stewart [12] observed that the condition p2 ≡ 0
is a degeneracy condition if one evaluates the polynomial
p2 at the origin, i.e. p2(0, 0, 0, 0, 0, 0) ≡ Ar. Since, to
fifth order,

p1(0, r21 + r22, (r
2
2 − r21)

2, 0, 0, λ) ≡
λh + ( 12Ar +Br)(r

2
1 + r22)

+p1∆(r
2
2 − r21)

2 + p1N (r21 + r22)
2 ,

p2(0, r21 + r22, (r
2
2 − r21)

2, 0, 0, λ) ≡
1
2Ar + p2N (r21 + r22) + p2∆(r

2
2 − r21)

2 ,

(20)

the {r1, r2} evolution is given by

ṙ1 = r1

[
λh +Brr

2
1 + (Ar +Br)r

2
2

+(p1∆ + p1N2 − p2N )r41 + (p1∆ + p1N2 + p2N )r42
+2(p1N2 − p1∆)r

2
2r

2
1 + p2∆(r

2
2 − r21)

3
]
,

ṙ2 = κ · ṙ1,

(21)

where κ · ṙ1 stands for the action of the reflection sym-
metry, defined in eq. (6). First, let us consider the fixed
points of eq. (21) with p1N = p2∆ = 0 and a slight change
in the notation: p2N = Er and p1∆ ≡ Fr. Inspection of
eq. (21) shows that the fixed points ra, rb satisfy

r2a =
1

2

[
− Ar

2Er
−

√
χ

4ErFr

]
r2b =

1

2

[
− Ar

2Er
+

√
χ

4ErFr

]
,

(22)

where the symbol χ, which is a function of the parameter
λh, is defined in table VI. Evidently, the MW states exist
when Ar/Er < 0 and 0 < χ/ErFr < A2

r/E
2
r .

The stability within the MW subspace, i.e. with re-
spect to perturbations in {r1, r2} only, can be analysed
in terms of the determinant and trace of the Jacobian
stability matrix restricted to this subspace:

det(MMW ) = 16r2ar
2
b

(
r2b − r2a

)
ErFr

−16r2ar
2
b

(
r2b − r2a

)2
p2∆,

(23a)

tr(MMW ) = −Ar

Er
(2Br +Ar) + p1N2

A2
r

E2
r

+4Fr(r
2
b − r2a)

2 + 4Err
2
br

2
a,

(23b)

In view of the MW existence conditions, inspection of
eq. (23) shows that the resulting MW solutions are sta-
ble when 2Br + Ar < 0 and ErFr > 0, i.e. a necessary
condition for a positive determinant and negative trace.
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In addition, inspection of eq. (22) requires the condition
Fr < 0 (resp. Fr > 0) for supercriticality (resp. subcrit-
icality). The conditions for the existence and supercriti-
cality are summarized in table VI.

Prior to a discussion regarding the possible bifurca-
tions of the MW branch, let us consider the effect of
higher order jets, i.e. coefficients p1N ̸= 0 and p2∆ ̸= 0.
Inspection of eq. (22) shows that the total amplitude
r2a + r2b = − Ar

2Er
remains constant regardless the value

of the parameter λh. Such a property is a consequence of
the hypothesis p2∆ = 0, i.e. the truncation of the normal
form up to fifth order terms. A coefficient p2∆ ̸= 0 will in-
troduce a small modification of the total amplitude with
respect to a variation in the parameter λh, which in this

case is equal to r2a+ r
2
b = − Ar

2Er
− p2

∆

Er
(r2b − r2a)2. A simple

perturbation analysis, with

r2i = εr2i,1 + ε2r2i,2 + h.o.t.

and ε≪ 1 for i = 1, 2, allows one to determine the effect
of including higher order terms. The first order fixed
point is as expected given by eq. (22) while the second
order solution is given by

r2a,2 =
p2∆
8Er

χ

FrEr

−p1N2

(
Ar

2Er

)2
Er

2
√
FrErχ− Er(Ar + 2Br)

,

r2b,2 =
p2∆
8Er

χ

FrEr

+p1N2

(
(
Ar

2Er

)2
Er

2
√
FrErχ− Er(Ar + 2Br)

.

(24)

As expected, the correction (24) is indeed of second
order, i.e. a function of (Ar/2Er)

2 and χ/(4ErFr) which
are second order corrections to (r2a,1 + r2b,1)

2 and (r2b,1 −
r2a,1)

2, respectively. Similarly, one may observe that p2∆
and p1N are second order corrections as long as the system
is nondegenerate, i.e. Fr ̸= 0, Er ̸= 0, Ar ̸= 0 and 2Br +
Ar ̸= 0. Assuming that these nondegeneracy conditions
hold, we conclude that the hypothesis of p2∆ = p1N2 = 0
does not induce any qualitative change in the dynamics
near the MW branch.

Let us now focus on the stability of the MW branch
with respect to perturbations in the variables r0 and Ψ.
In this form the MW solutions arise as a pair of solutions
MWΨ±

0
. The MWΨ+

0
(resp. MWΨ−

0
) solution is char-

acterized by cosΨ+ > 0 (resp. cosΨ− < 0). The pair
of solutions MWΨ±

0
can bifurcate into Precessing Waves

or a modulated interacting mixed mode ĨMM solution.
One of the branches is always unstable with respect to
perturbations in the phase Ψ whereas the other is al-
ways stable, depending on the sign of l3. In the case that
l3 < 0 (resp. l3 > 0) the branch MWΨ−

0
(resp. MWΨ+

0
)

is stable (resp. unstable) with respect to perturbations
in Ψ. The MWΨ−

0
solution is stable if the eigenvalue

λs − l1
Ar

Er
− l3rarb| cosΨ−

0 | < 0 and it loses stability to a

Precessing Wave whenever this eigenvalue changes sign.

The branch MWΨ+
0
bifurcates to a ĨMM solution, which

is a 2-torus in the original coordinates, whenever

Ai − 2l2
l3

(
χ/ErFr

)1/2(
(Ar/Er)2 − χ/(ErFr)

)1/2 > 1 ,

implying no fixed point Ψ0 is present. In this case the
phase Ψ is associated with a constant drift. The modu-
lated interacting mixed mode branch is thus stable when-
ever both

λs − l1
Ar

Er
± l3

4

[A2
r

E2
r

− χ

FrEr

]
< 0 ,

while a bifurcation to a Precessing Wave occurs whenever

λs − l1
Ar

Er
+ | l3

4

[A2
r

E2
r

− χ

FrEr

]
cosΨ±| ≥ 0 .

In the supercritical case the PrW connects in parame-
ter space a Mixed Mode with a Modulated Wave Mode.
Finally, a possible scenario for a bifurcation from a PrW
towards a three frequency wave arises whenever eq. (9d)
does not possess a fixed point.

D. Bifurcation from Rotating Waves to Precessing
Waves

As indicated in table III, the RW branch has a couple
of complex eigenvalues which may lead to a bifurcation
to a Precessing Wave (PrW). This situation was investi-
gated by Crawford et al. [13] using the primitive sixth-
order system. The derivation was lengthy and required
the demonstration of an extension of the Hopf theorem
to complex equations. The use of the polar representa-
tion introduced here leads to substantial simplifications
because, within this representation, this bifurcation is
in fact a steady-state one, and the resulting Precessing
Wave is a stationary solution of the polar equations.
We consider here the clockwise (ωh > 0) RW with

(r1, r2) ≡ (rR, 0), where rR is given in table III. Accord-
ing to the table, a bifurcation occurs along this branch
when the bifurcation parameter, defined by

σR ≡ λs + l1r
2
R , (25)

vanishes. Inspection shows that the corresponding eigen-
vector breaks the symmetry of the mixed mode (i.e., it
points in the a0 direction). We expect, therefore, that
the branch originating in this bifurcation will be char-

acterized by r0 = O(σ
1/2
R ). We further anticipate that

r2 = O(σR) and r1 = rR + x1 with x1 = O(σR). We also
assume that Ψ has a finite limit in the vicinity of the
bifurcation point. With these assumptions, the station-
ary solutions of the polar system (12) obey the following
equations at leading order:
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σR + l0r
2
0 + 2l1rRx1 + l3rRr2 cosΨ = 0 (26a)

2BrrRx1 + Crr
2
0 = 0 (26b)

ArrRr2 = −r20
(
Dr cosΨ−Di sinΨ

)
(26c)

(Ai − 2l2)rRr2 = −r20
(
Di cosΨ +Dr sinΨ

)
. (26d)

To solve these equations, we add the squares of equations
eqs. (26c) and (26d) to obtain[

A2
r + (Ai − 2l2)

2r2Rr
2
2

]
= |D|2r40 . (27)

This equation allows us to express r2 in terms of r0. Elim-
inating sinΨ from eqs. (26c) and (26d) leads to

cosΨ = −
DrAr +Di

(
Ai − 2l2

)
|D|

√
A2

r + (Ai − 2l2)2
. (28)

Finally, x1 is easily expressed as a function of r0 from
eq. (26b). Introducing these expressions into eq. (26a)
yields a classical branching equation which can be cast
in the form

σR +Hrr20 = 0,

with Hr = l0 − l1
Cr

Br
− l3

DrAr +Di(Ai − 2l2)

A2
r + (Ai − 2l2)2

.

(29)
It follows that in the vicinity of the bifurcation point,
the Precessing Waves are given by the branching equa-
tion r0 ≈ (−σR/Hr)1/2, and the bifurcation is then su-
percritical if Hr < 0.

The precession rate corresponding to this solution is
given by eq. (10a) and reads

ϕ̇0 = −l2r2R +Hir20
with Hi = l2

Cr

Br
+ l3

DiAr−Dr(Ai−2l2)
A2

r+(Ai−2l2)2
.

(30)

Note that the branching parameter Hr and the term
Hi correspond, respectively, to the real and imaginary
parts of the complex Hopf coefficient H computed in [13],
at the end of a much lengthier analysis.

E. Robust heteroclinic cycles

As already mentioned one may expect the pres-
ence of structurally stable or robust heteroclinic
cycles in our system in view of its similarity to
the mode interaction problem studied in [3, 4]
when written in polar coordinates. More gener-
ally, a heteroclinic cycle is a set of trajectories

{
(
r
(j)
0 (t), r

(j)
1 (t), r

(j)
2 (t),Ψ

(j)
(t)

)
}j=1,2,...,m that connect

equilibrium solutions {
(
r
(j)
0 , r

(j)
1 , r

(j)
2 ,Ψ(j)

)
}j=1,2,...,m

with the property that
(
r
(j)
0 (t), r

(j)
1 (t), r

(j)
2 (t),Ψ

(j)
(t)

)
is backward asymptotic to

(
r
(j)
0 , r

(j)
1 , r

(j)
2 ,Ψ(j)

)
and

forward asymptotic to
(
r
(j+1)
0 , r

(j+1)
1 , r

(j+1)
2 ,Ψ(j+1)

)

FIG. 8: Structure within in the isotropy lattice
suggesting that there may exist of a robust heteroclinic

cycle.

with the convention
(
r
(m+1)
0 , r

(m+1)
1 , r

(m+1)
2 ,Ψ(m+1)

)
=(

r
(1)
0 , r

(1)
1 , r

(1)
2 ,Ψ(1)

)
. Such cycles are robust if each con-

nection is robust, i.e. cannot be destroyed by changing
parameters. Robust heteroclinic cycles typically do not
exist in general nonsymmetric vector fields. However,
they may exist in symmetric systems such as ours. First
examples of robust heteroclinic cycles connecting saddle
points were found in [14, 15]. Afterwards, Melbourne,
Krupa and collaborators [16, 17] established a general
approach to the existence and stability of structurally
stable heteroclinic cycles in Γ-equivariant systems. The
existence of a robust heteroclinic cycle requires the
following conditions:

• Each saddle solution sits on a flow-invariant line lj ,
say, and each such line is the fixed-point subspace
for the isotropy subgroup of the saddle solution, i.e.
lj = Fix(Σj−1) ∩ Fix(Σj).

• The isotropy subgroups of the invariant lines are
maximal isotropy subgroups.

• The invariant plane containing the invariant line
is the fixed point subspace of a maximal isotropy
subgroup.

The proof of this result is based on the existence of
cycles in the isotropy lattice, such as fig. 8 for the present
case, and suggests that the present system may possess
robust heteroclinic cycles.
Indeed, the isotropy lattice in fig. 8 suggests the exis-

tence of a robust heteroclinic cycle between the steady-
state mode SS and the standing wave mode SW. Such
a heteroclinic cycle possesses two connections that lie
within the Fix

(
Z(κ)

)
and Fix

(
Z(κ · (π, π)

)
subspaces. In

our notation the heteroclinic connections lie in the in-
variant subspaces of the two MM solutions. Melbourne
et al. [18] found that in the supercritical case such a cy-
cle exists whenever the steady-state mode SS is a saddle
(resp. sink) in the fixed-point subspace Fix

(
Z(κ)

)
of the

isotropy subgroup of the MM0 mode and a sink (resp.
saddle) in the fixed-point subspace Fix

(
Z(κ · (π, π))

)
of

the isotropy subgroup of the MMπ mode. Similarly, the
SW mode must be a sink (resp. saddle) in Fix

(
Z(κ)

)
and

a saddle (resp. sink) in Fix(Z
(
κ · (π, π)

)
. These condi-

tions are satisfied if the first three existence conditions in
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TABLE VII: Definining conditions for structurally and asymptotically stable heteroclinic cycles connecting SS and
SW. Here ν±SS ≡ λh + (Cr ±Dr)r

2
P and ν±SW ≡ λs + (2l1 ± l3)r

2
S .

Name of solution Existence Asymptotic stability
(condition for supercriticality) (Asymp. stable if ii) and either i-a) or i-b) )

HetSS−SW ν+
SSν

−
SS < 0 i-a) ν+

SSν
−
SW < −ν−

SS min(−ν+
SW , ν−

SW + 2Arr
2
s)

l0 > 0 ν+
SW ν−

SW < 0 i-b) ν−
SSν

+
SW < −ν+

SS min(−ν+
SW , ν+

SW + 2Arr
2
s)

Ar + 2Br > 0 ν+
SSν

−
SW > 0 ii) Ar > 0

λs
λh

(Cr+Dr)
l0

+ λh
λs

(2l1+l0)
(2Br+Ar)

> −2
λs
λh

(Cr−Dr)
l0

+ λh
λs

(2l1−l0)
(2Br+Ar)

> −2

table VII are satisfied. In addition, no other fixed point
solutions can be present in either of the fixed point sub-
spaces and solutions starting in the neighborhood of the
trivial mode are required to remain bounded, a condi-
tion that is satisfied if the last two existence conditions
in table VII hold.

The necessary and sufficient conditions for the asymp-
totic stability of a particular type of robust heteroclinic
cycle referred to as Type A are derived in [17]. This
type of heteroclinic cycle is constructed in such a way
that each trajectory connecting two fixed-point solutions
lies within the fixed point subspace of an isotropy group
isomorphic to Z2. Because of this the necessary and suf-
ficient condition for asymptotic stability is

m∏
j=1

min
(
− νcj , ν

e
j − νtj

)
>

m∏
j=1

νej , (31)

where νcj , ν
e
j , ν

t
j , ν

r
j denote the contracting, expanding,

transversal and radial eigenvalues of the solution j. The
contracting eigenvalue of the solution j corresponds to
the minimum eigenvalue (maximum −νj) in the fixed
point subspace of solution j; the expanding eigenvalue
corresponds to the eigenvalue with the largest real part
among the eigenvalues restricted to the fixed point sub-
space of the backward asymptotic heteroclinic connec-
tion; the radial eigenvalue is the eigenvalue with the
smallest real part (largest −νrj ) within the intersection
between the two previous fixed point subspaces and the
transverse eigenvalue correspond to the eigenvalue with
the largest real part among the eigenvalues restricted to
the orthogonal complement. The proof of the identity
eq. (31) is based on the use of a set of Poincaré return
maps to obtain global estimates of stability from local
ones. For more details the reader is referred to [16, 17].
The application of eq. (31) shows that in our case the het-
eroclinic cycle HetSS−SW is asymptotically stable pro-
vided condition ii) and either condition i-a) or i-b) in
table VII hold. This possibility was not considered in
[1].

V. THE DEGENERATE CASE Di = 0, Ai − 2l2 = 0

In this section we consider a codimension-two degen-
erate case where the parameters Di and Ai − 2l2 both

vanish. This situation arises when all the nonlinear
coefficients in eq. (8) are real. This case is of basic
theoretical interest since it actually corresponds to the
case where an additional Z2 symmetry is present in the
primitive amplitude equations. In this case eq. (8) also
reduces to a special case of the equations studied in
generality by Silber & Knobloch [19] provided we also
take l0 = Ar + 2Br, λs = λh.

In this case the equations in polar coordinates take the
following form:

ṙ0 =
[
λs + l0r

2
0 + l1

(
r21 + r22

)
+ l3r1r2 cosΨ

]
r0 (32a)

ṙ2 + ṙ1 =
[
λh +Br(r

2
1 + r22) +Arr1r2

+r20(Cr +Dr cosΨ)
]
(r1 + r2)

(32b)

ṙ2 − ṙ1 =
[
λh +Br(r

2
1 + r22)−Arr1r2

+r20(Cr −Dr cosΨ)
]
(r2 − r1)

(32c)

Ψ̇ = −
[
2l3r1r2 +Drr

2
0

r21 + r22
r1r2

]
sinΨ . (32d)

In this case the PQRS coordinates are particularly
useful. The equations in these coordinates take the fol-
lowing form:

Ṙ = 2
[
λs + l0R+ l1S + l3PQ

]
R, (33a)

Ṡ = 2
[
λh +BrS + CrR

]
S

+4
[
ArP +DrRQ

]
P,

(33b)

Ṗ = 2
[
λh +BrS + CrR

]
P

+
[
ArP +DrRQ

]
S,

(33c)

Q̇ =
[
2l3P

2 +DrRS
]
1−Q2

P . (33d)
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TABLE VIII: Nomenclature and isotropy group of steady-state solutions of the system (32).

Name Representative Isotropy group (polar) Frequencies
Primary bifurcations:

SS (ra, 0, 0, nd) Z2(κr)× Z2(κ)× Z2(Φπ) 0
RW0 (0, ra, 0, nd) D4(Rπ/2Φπ/2, κ · κr) 1
RWπ (0, ra, 0, nd) D4(Rπ/2Φπ/2, κ · κr · Φπ) 1
SW0 (0, ra, ra, nd) Z2(κr)× Z2(κ)× Z2(RπΦπ) 1
SWπ (0, ra, ra, nd) Z2(κrΦπ)× Z2(κ)× Z2(RπΦπ) 1

Secondary bifurcations:
MM0 (ra, rb, rb, 0) Z2(κr)× Z2(κ) 1
MMπ (ra, rb, rb, π) Z2(κrΦπ)× Z2

(
κ ·RπΦπ

)
1

IMM0 (0, ra, rb, 0) Z2(κr · κ)× Z2(RπΦπ) 1
IMMπ (0, ra, rb, π) Z2(κr · κ · Φπ)× Z2(RπΦπ) 1

Tertiary bifurcations:
PrWA (ra, rb, rb,Ψ) Z2(κr) 2
PrWB (ra, rb, rc, 0 or π) Z2(κr · κ) 2

ĨMM (0, ra, rb,Ψ(t)), Ψ(t) = ϕ1(t)− ϕ2(t) Z2(RπΦπ) 2

FIG. 9: Lattice of isotropy groups of the degenerate
normal form.

These equations possess an additional reflection sym-
metry

κr : (r0, r1, r2,Ψ) → (r0, r2, r1,Ψ) (34)

responsible for a reflection symmetry in Ψ:

(κr · κ) · (r0, r1, r2,Ψ) = (r0, r1, r2,−Ψ).

This symmetry has several consequences. First, the

isotropy group of the polar normal form is now Γ
(d)
ρ ≃

Z2
2⋊D4 ≃ Z4

2⋊Z2. Its isotropy lattice, depicted in fig. 9,
displays new isotropy groups whose fixed point subspaces

are of dimension three, viz. ΣPrWA
, ΣPrWB

, Σ
ĨMM

. The

fixed point subspaces Fix
(
ΣPrWA

)
and Fix

(
ΣPrWB

)
are

characterized by r1 = r2 and sinΨ = 0, respectively, and
are of dimension four in the space of complex amplitudes,
i.e. they display two-frequency behavior, see table VIII.
In contrast, the fixed point subspace Fix

(
Σ

ĨMM

)
is char-

acterized by r0 = 0. Strictly speaking this is not an in-
variant subspace of the cubic truncation (since Ar ̸= 0)
but it does become so when the truncation is extended
to fifth order, cf. section IVC2. This subspace is also of
dimension four, and is spanned by solutions of the form
(0, a1, a2), i.e., by r1 ̸= r2 and the corresponding phases
(ϕ1, ϕ2).

In addition, it turns out that the isotropy subgroups
associated to the Interacting Mixed Modes ΣIMM0

and
ΣIMMπ

are not conjugates of each other, i.e. these so-
lutions are distinct as in the case of the Mixed modes
MM0 and MMπ. The reason behind the distinction be-
tween the subgroups ΣSW0

, ΣSWπ
(resp. ΣRW0

, ΣRWπ
)

is algebraic: these isotropy groups are not conjugate of
each other, although their fixed point representative are
of the same type. This is because the phase Ψ is un-
defined for either rotating waves and standing waves - a
consequence of the fact that for these states a0 = 0. How-
ever, we find it convenient to distinguish between SW0

and SWπ (resp. RW0 and RWπ) based on the limiting
behavior of the Mixed Modes (resp. Mixed Waves) as
r0 → 0, as indicated in the isotropy lattice fig. 9.

In this degenerate case the conditions for higher or-
der bifurcations, as well as the complete definition of all
possible branches of precessing waves, can be obtained
explicitly. The corresponding results are tabulated in
table IX. It will be found that there are at most three
branches of precessing waves. The first two are denoted
PrWA and PrWB , while the third kind is generic with
no additional symmetry and hence trivial isotropy, and
is denoted PrWG.
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A. Bifurcations from Mixed Modes and Rotating
Waves

Bifurcations from Mixed Modes are governed by the
eigenvalues of the matrices M±

b defined in section IVC
(apart from the possible bifurcation to a modulated
mixed mode if l0(2Br + Ar) < 0). In the present case,
the matrix is diagonal with real eigenvalues. Therefore
symmetry-breaking bifurcations from MM can only lead
to PrW (Precessing Waves), excluding the possibility of
PuW (Pulsating Waves). The number of such bifurca-
tions follows from the eigenvalues of M±

b . The first of
these is 2(−Arr

2
b ∓Drr

2
a), and this quantity changes sign

along the MM0 (MMπ) branch. The second eigenvalue
of M±

b is ∓2
(
l3r

2
b +Drr

2
a

)
. Thus if l3Dr > 0, this eigen-

value remains of one sign for both mixed modes. On the
other hand, if l3Dr < 0, it changes sign somewhere along
both branches. So, the number of branching points to
Precessing Waves along the MM branches is either one
(if l3Dr > 0) or three (if l3Dr < 0). These results are
restated in the top part of table IX, where the conditions
for a zero eigenvalue are stated in terms of λs and λh
instead of ra and rb using table VI.

We also report in the table the branching point from
the RW branch, investigated in section IVD. This point
exists generically and the corresponding branch has Ψ =
0 (resp. Ψ = π) if ArDr < 0 (resp. ArDr > 0). We end
up with a total number of either 2 or 4 bifurcation points
to Precessing Waves.

The ĨMM solution is degenerate as was the case already
for the generic third order normal form. The addition of
higher order terms, as done in section IVC2, leads to the

existence of the solution ĨMM, which in this degenerate
case is a heteroclinic connection between the Interacting
Modes IMM0 and IMMπ. This last statement follows
from the integration of eq. (32d) with r0 = 0, which leads
to Ψ → 0 as t→ ∞ and Ψ → π as t→ −∞ if l3rarb > 0
and to Ψ → π as t → ∞ and Ψ → 0 as t → −∞ if
l3rarb < 0.

B. The subspace r1 = r2

The dynamics within the invariant subspace
Fix

(
ΣPrWA

)
, defined in polar coordinates as

Fix
(
ΣPrWA

)
= {(r0, r1, r2,Ψ) : r1 = r2}, (35)

take the form

ṙ0 =
[
λs + l0r

2
0 + 2l1r

2
1 + l3r

2
1 cosΨ

]
r0 (36a)

ṙ1 =
[
λh + (Ar + 2Br)r

2
1 + (Cr +Dr cosΨ)r20

]
r1 (36b)

Ψ̇ = −2
[
l3r

2
1 +Drr

2
0

]
sinΨ . (36c)

The PRQ coordinates can also be used in this subspace
(which corresponds to S = 2P ):

Ṙ = 2
[
λs + l0R+ (2l1 + l3Q)P

]
R, (37a)

Ṗ = 2
[
λh + (2Br +Ar)P + (Cr +DrQ)R

]
P, (37b)

Q̇ = 2
[
l3P +DrR

]
(1−Q2) . (37c)

The resulting systems are formally identical to those
governing the interaction of two steady-state modes with
opposite parity studied by Hirschberg & Knobloch, eq.
(10) of [3], given by the correspondence

r0 ≡ r, r1 ≡ ρ,Ψ ≡ 2Ψ, λs ≡ λ, λh ≡ µ, l0 ≡ a,
2l1 ≡ b, l3 ≡ e, 2Br +Ar ≡ d,Cr ≡ c,Dr ≡ f.

(38)

The results of [3, 4] can therefore be applied to the
system eq. (36). We use these results to conclude that
when Drl3 < 0 the two branches of mixed modes are
connected by a tertiary branch of the form r0 ̸= 0, r1 =
r2 ̸= 0, sinΨ ̸= 0. In the nomenclature of the present
manuscript this branch corresponds to a Precessing Wave
of type A (see table III). The defining equations for this
solution are

R = r20 =
σ0A − σπA
2DrΣA

, (39a)

P = r21 = r22 = −σ0A − σπA
2l3ΣA

, (39b)

Q = cosΨ =
σπA + σ0A
σπA − σ0A

, (39c)

where

ΣA ≡ (2Br +Ar + 2l1)Dr − l3(Cr + l0) ̸= 0,
Σa

A ≡ Dr(Ar + 2Br)− l0l3,

H0,π
A ≡ ( ∆+ +∆−)− 4Drl3(1− ΣA/Σ

a
A)

1
2

(
σ0A + σπA

)
≡

(
(2Br +Ar)Dr − Crl3

)
λs

+
(
2Drl1 − l0l3

)
λh,

1
2

(
σ0A − σπA

)
≡ Drl3(λs + λh),

(39d)
as in eq. (17) of [3]. The range of existence of this con-
necting branch in the (λs, λh) plane is obtained by im-
posing the condition cosΨ ∈ [−1, 1] on eq. (39c); the
conditions obtained from cosΨ = ±1 are identical to
the conditions obtained from the vanishing of the second
eigenvalue of M±

b and displayed in table IX, confirming
that the PrWA branch connects the two Mixed Mode
branches.
The stability of all the solutions within the invariant

subspace Fix
(
ΣPrWA

)
is determined as in Ref. [3]. The

linearized dynamics within this subspace are governed by
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TABLE IX: Higher order bifurcations in the degenerate case Di = 0, Ai − 2l2 = 0. Note: (1)Results for bifurcations
to modulated mixed modes hold in the generic case. (2)Results relevant to the PrW of type A also hold in the less
degenerate case to Di = 0, Ai − 2l2 ̸= 0. (3)The bifurcation from rotating waves leads to a PrWB in the present case,
and to a general PrW in the generic case. (4)The conditions listed for the existence of Hopf bifurcations ensure an

odd number of Hopf lines (1 or 3). The condition for an odd number of Hopf lines in the case of a termination at the
MMπ fixed point is ∆+Λ

+
B > 0.

Branch New solution Bifurcation point Condition for existence

MM0 PrW
(2)
A σ0A ≡

[
l3(Cr +Dr)−Dr(2Br +Ar)

]
λs +

[
(2l1 + l3)Dr − l0l3

]
λh = 0 l3Dr < 0

PrWB σ0B ≡ −
[
ArCr − 2BrDr

]
λs +

[
Arl0 −Dr(2l1 + l3)

]
λh = 0 ArDr < 0

M̃M
(1)

0 2(Br +Ar)(Cr +Dr − l0)λs + l0(2l1 + l3 − 2Br −Ar)λh = 0 (2Br +Ar)l0 < 0

MMπ PrW
(2)
A σπA ≡

[
l3(Cr −Dr)−Dr(2Br +Ar)

]
λs +

[
(2l1 − l3)Dr − l0l3

]
λh l3Dr < 0

PrWB σπB ≡ −[ArCr + 2BrDr]λs + [Arl0 +Dr(2l1 − l3)]λh = 0 ArDr > 0

M̃M
(1)

π (2Br +Ar)(Cr +Dr − l0)λs + l0(2l1 + l3 − 2Br −Ar)λh = 0 (2Br +Ar)l0 < 0

RW PrW
(1,3)
B σR ≡ λs − l1λh/Br = 0 Generic

PrWA PrWG ≡
(
l3(σ0A + σπA)−Ar(σπA − σ0A)

)
/
(
ΣAl3) = 0 l3Dr < 0, A2

r < l23
3FW(A) HA = 0 eq. (44).

PrWB PrWG σBG ≡ [2l3BrDr −A2
rCr]λs + [A2

rl0 − 2l1l3Dr − l3ArDr]λh = 0 If ArDr < 0, A2
r −Arl3 < 0,

If ArDr > 0, A2
r +Arl3 < 0

3FW(B)(4) HB = 0 eq. (55)
PrWG 3FW Ω4 − IIGΩ

2 +DG = 0, TGΩ
2 − IG = 0 −

a 3×3 matrix with determinant DA, trace TA and second
invariant IA given below:

DA = − 4

DrΣ2
Al3

σπAσ0A (σπA − σ0A) , (40a)

TA =
Σa

A (σπA − σ0A)

Drl3ΣA
, (40b)

IA = −∆+σ
2
πA +∆−σ

2
0A

Drl3Σ2
A

+
(−4Drl3 +∆+ +∆−)

Drl3Σ2
A

σπAσ0A.
(40c)

Since−1 < Q < 1 along the PrWA branch the quantity
σπA − σ0A ≡ −2Drl3(λs + λh) cannot vanish along it.
As a consequence, DA only vanishes at the bifurcations
to Mixed Modes (defined by Q = ±1), and no steady
state bifurcations occurs within the invariant subspace
ΣPrWA

along the branch. The necessary and sufficient
conditions for the stability of the branch within its fixed
point subspace are DA < 0, TA < 0, IA > 0 and HA ≡
IA − DA/TA > 0. Inspection of eq. (40a) shows that
the determinant is negative (resp. positive) whenever
σπA − σ0A > 0, which occurs when l3 > 0, Dr < 0
(resp. l3 < 0, Dr > 0) corresponding to the bifurcation of
PrWA from the MMπ mode (resp. MM0). Provided that
the determinant is negative, then the trace is negative if
and only if ΣA

Σa
A
> 0. If these two conditions are satisfied,

the necessary and sufficient condition of the positivity of
the second invariant IA all along the branch is that ∆+ ≥
0 and ∆− ≥ 0 (defined in table VI), since σ0AσπA ≤ 0

all along the branch. The fourth condition is as follows,

0 < HA ≡ 1

Drl3Σ2
A

[
−∆+σ

2
πA −∆−σ

2
0A

+σπAσ0A(∆+ +∆− − 4Drl3(1− ΣA/Σ
a
A)

]
.

(41)
Thus, if the previous three conditions are satisfied, the
necessary and sufficient condition for HA > 0 all along
the branch is∣∣∣(1− ΣA

Σa
A

)
− ∆+ +∆−

4Drl3

∣∣∣ ≥ −
√

∆+∆−

2Drl3
, (42)

which is immediately satisfied if 0 < ΣA/Σ
a
A < 1. Sum-

marizing, the necessary and sufficient condition for the
stability of the branch within the invariant subspace
ΣPrWA

all along its existence is

∆+ > 0, ∆− > 0, 0 <
Σa

A

ΣA
< 1, l3 > 0 . (43)

The condition ΣA

Σa
A
< 1 can be replaced by eq. (42).

The quantity HA(σ0,A, σπ,A) can be interpreted as the
distance to a Hopf bifurcation of the PrWA branch, which
is located at HA(σ0,A, σπ,A) = 0. In particular, because
the trace TA divides DA, we have at most two Hopf bi-
furcations. There is a supercritical Hopf from the PrWA

branch leading to a stable 3FW if the following conditions
are satisfied:

∆+ > 0, ∆− > 0, l3Dr < 0,√
∆+∆−

2Drl3
≤

(
1− ΣA

Σa
A

)
− ∆+ +∆−

4Drl3
≤ −

√
∆+∆−

2Drl3
.

(44)
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The case of a single Hopf bifurcation arises when the
following two degeneracy conditions hold, ∆−∆+ = 0
and ΣA = Σa

A. Therefore, whenever eq. (44) is satisfied
and ∆+∆− ̸= 0 we have two Hopf bifurcations in the
(σ0,A, σπ,A) plane, located at

σπA = K±
A,Hσ0A,

K± ≡ H0,π
A

2∆+
± 1

∆+

(
(H0,π

A )2 − 4∆+∆−
) 1

2 ,
(45)

with H0,π
A defined in eq. (39d).

In the present situation we also need to determine one
additional eigenvalue that describes the stability in the
r2−r1 direction. This eigenvalue, hereafter σAG, is given
by

σAG ≡ 2P (l3Q−Ar)

=
l3(σ0A + σπA)−Ar(σπA − σ0A)

ΣAl3
.

(46)

A necessary and sufficient condition ensuring the exis-
tence of a steady state bifurcation associated with the
vanishing of σAG is that the signs of σAG at either end
of the branch are opposite. This leads to the condition
reported in the last column of table IX.

C. The subspace sinΨ = 0

The second fixed point subspace corresponds to
sinΨ = 0. At first glance, this subspace corresponds
to two distinct cases, Ψ = 0 and Ψ = π. However, be-
cause of the symmetry of the polar equations, a jump in
Ψ by π is equivalent to a change of sign of either r1 or
r2. As a consequence, to investigate this subspace, we
may set Ψ = 0 but allow arbitrary signs r1 and r2. Both
Mixed Mode solutions belong to this subspace (MMπ cor-
responds to Ψ = 0, r2 = −r1). The pure modes can also
be considered as part of this subspace, even though Ψ is
not defined for these branches. Within this subspace, the
equations take the form:

ṙ0 =
[
λs + l0r

2
0 + l1

(
r21 + r22

)
+ l3r1r2

]
r0 (47a)

ṙ1 =
[
λh +Brr

2
1 + (Ar +Br)r

2
2 + Crr

2
0

]
r1

+Drr
2
0r2

(47b)

ṙ2 =
[
λh +Brr

2
2 + (Ar +Br)r

2
1 + Crr

2
0

]
r2

+Drr
2
0r1

(47c)

Ṙ = 2
[
λs + l0R+ l1S + l3P

]
R (48a)

Ṡ = 2
[
λh +BrS + CrR

]
S

+4
[
ArP +DrR

]
P

(48b)

Ṗ = 2
[
λh +BrS + CrR

]
P

+
[
ArP +DrR]S .

(48c)

To detect the existence of Precessing Waves in the
present subspace, we look for steady solutions of the
above equations. From eqs. (48b) and (48c) we obtain
the conditions

λh +BrS + CrR = 0, ArP +DrR = 0. (49)

The Precessing Waves in question belong to this sub-
space, leading to

R = r20 = −Ar

Dr

σ0B − σπB
4ΣB

, (50a)

P = r1r2 =
σ0B − σπB

4ΣB
, (50b)

S = r21 + r22 = −σ0B + σπB
2ΣB

, (50c)

where ΣB ≡ Br(Arl0 −Drl3)− l1(ArCr) ̸= 0,

σR ≡ λs −
l1
Br

λh,

σ0B + σπB ≡ 2
[(
ArCr

)
λs +

(
l3Dr −Arl0

)
λh

]
,

σ0B − σπB ≡ 4BrDrσR .
(50d)

These expressions define a single branch of Precessing
Waves referred to as the PrWB branch. One may check
that the conditions obtained on imposing P = 0 and S =
2|P | yield, respectively, the conditions listed in table IX
for the bifurcation from Rotating Waves and the relevant
Mixed Mode, confirming that the PrWB branch connects
these two branches. Note that the sign of P is given by
ArDr. So, had we adopted the convention that both r1
and r2 are positive and Ψ is either 0 or π we would have
arrived at the conclusion that PrWB is associated with
Ψ = 0 if ArDr < 0 and Ψ = π if ArDr > 0. Note
that the precession frequency given by eq. (10a) vanishes
when l2 = 0. In this case, the resulting mode will actually
be singly periodic in the primitive variables, instead of a
two-frequency wave. However, this property is not visible
when working with the polar variables.
The stability of the PrWB branch within its invariant

subspace Fix (ΣPrWB
) can be determined by studying its

characteristic polynomial in a similar manner as done for
PrWA in section VB. The invariants of the 3×3 stability
matrix are the determinant DB , trace TB and IB given
below:

DB = −4ΣBR(2P − S)(2P + S)

=
Ar

DrΣ2
B

σπBσ0B (σπB − σ0B)
(51a)
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TB = 2l0R+ (Ar + 2Br)S

=
Arl0

(
σπB − σ0B

)
−Dr(Ar + 2Br)

(
σ0B + σπB

)
2DrΣB

(51b)

IB = R
(
∆+ (2P + S) + ∆− (−2P + S)

)
+2ArBr

(
S2 − 4P 2

)
=

Ar

4DrΣ2
B

(
∆−σ

2
πB −∆+σ

2
0B

)
+

Ar

4DrΣ2
B

(
8BrDr +∆+ −∆−

)
σ0BσπB .

(51c)

The vanishing of σR coincides with the origin of the
PrWB branch along the RW branch. Note that the van-
ishing of σR implies σ0B = σπB . Similarly, one of the
quantities σ0B or σπB vanishes on the termination of the
PrWB branch on one of the mixed modes. One may ver-
ify that the third point where DB vanishes is located out-
side the existence interval of the branch, confirming that
no parity-breaking bifurcation occurs along the branch.
In addition, one may confirm that σ0BσπB > 0, except
at the termination point.

The necessary conditions for stability within the
Fix(PrWB) subspace are DB < 0, TB < 0, IB > 0 and
HB ≡ IB − DB/TB > 0. From eq. (51a) one may eas-
ily verify that the determinant is negative if and only if
ΣB < 0. Similarly, the trace has constant negative sign if
Ar+2Br < 0 and l0 < 0, which are the conditions for the
supercriticality of Standing Waves and the Steady-State
mode, respectively. If instead l0(Ar +2Br) < 0, then the
trace changes sign within the region of existence of the
PrWB solution. Analogously, the necessary conditions
for a constant positive sign of the second invariant IB
everywhere along the branch are

ArBr > 0 and ∆+ > 0 if ArDr < 0
or ∆− > 0 if ArDr > 0 .

(52)

The first condition ensures that the second invariant is
positive at its birth from the RW branch, while the sec-
ond condition ensures that IB is positive at its termina-
tion on the corresponding MM branch. To ensure that
IB > 0 along the whole PrWB branch it suffices to have
∆− > −C+ if ArDr < 0, a condition that depends only
on ∆+ and BrDr, or ∆+ > −C− if ArDr > 0 for C− > 0,
a condition that depends only on ∆− and BrDr.
The PrWB branch is stable when HB > 0. If HB

changes sign along the PrWB branch a Hopf bifurcation
with frequency Ω takes place (HB = 0), characterized by
the following set of conditions

TBΩ
2 −DB = 0, Ω2 − IB = 0 . (53)

These equations yield the conditions for the presence of
a Hopf bifurcation along the PrWB branch stated above.
In terms of the eigenvalues σ0B(λs, λh) and σπB(λs, λh)

of the Mixed Modes the Hopf distance HB is given by

HB ≡ − Ar

8D2
rΣ

3
B

(
∆−Λ

−
Bσ

3
πB −∆+Λ

+
Bσ

3
0B

+
[
Λ+
B

(
8BrDr −∆−

)
+ 2Arl0∆+ − 8DrΣB

]
σπBσ

2
0B

+
[
Λ−
B

(
8BrDr +∆+

)
+ 2Arl0∆− + 8DrΣB

]
σ2
πBσ0B

)
Λ±
B ≡ Dr(Ar + 2Br)±Arl0 .

(54)
The condition HB = 0 describes a planar cubic al-

gebraic curve in (σ0B , σπB). A possible procedure is to
determine the type of the planar curve isomorphic to one
of the five canonical forms [20], and then determine the
number of solutions from it. Instead of following this pro-
cedure we prefer to provide a sufficient condition for the
appearance of a Hopf bifurcation along this branch. Pro-
vided eq. (52) holds, the frequency Ω is real, and there
exists an odd number (one or three) of Hopf bifurcations
whenever HB has opposite signs at the two endpoints of
the branch. This occurs when

∆−Λ
−
B < 0 (MM0), ∆+Λ

+
B > 0 (MMπ) . (55)

When eq. (55) does not hold the number of Hopf bifur-
cations is even (none or two). In such a case one can
distinguish between the different scenarios using, for in-
stance, the Descartes sign rule for positive roots.
In addition to the three eigenvalues governing the sta-

bility of the PrWB branch within the sinΨ = 0 subspace
discussed above, there is a fourth eigenvalue governing
the stability in the orthogonal direction given by

σBG = −(2l3P −ArS). (56)

The vanishing of this eigenvalue leads to the birth of a
branch of General Precessing Waves. The resulting con-
dition in terms of λs and λh is listed in table IX. A condi-
tion ensuring that such a bifurcation occurs somewhere
along the branch is that σBG has opposite signs at its
termination points on RW and the relevant MM. This
leads to the condition reported in the last column of ta-
ble IX. This condition is the same as for the bifurcation
from PrWA.

D. The third branch of precessing waves

As demonstrated in the previous sections, two bifur-
cations can occur along the precessing waves of type A
and B giving rise to a precessing wave with no symmetry
called PrWG. Here we investigate this branch as well as
its stability. We look for a steady solution of the polar
equations with r0 ̸= 0, r1 ̸= r2 and sinΨ ̸= 0, cf. Ta-
ble VIII. The same manipulations as before lead to the
following conditions:

0 = PQl3 +Rl0 + Sl1 + λs,
0 = BrS + CrR+ λh,
0 = ArP +DrQR,
0 = DrRS + 2P 2l3 .

(57)
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The solution of this system yields the conditions for the
presence of the PrWG branch:

R =
2Brλs − (2l1 +Ar)λh

ΣG
,

S = 2
Crλs − l0λh

ΣG
,

P =
−1

l3ΣG

(
Drl3

(
Brλs − (2l1 +Ar)λh

)(
Crλs − l0λh

)) 1
2

,

Q = Ar

( Crλs − l0λh
Drl3[2Brλs − (2l1 +Ar)λh]

) 1
2

,

where ΣG = Cr(Ar + 2l1)− 2Brl0 ̸= 0.
(58)

These expressions define a single solution branch. One
may check that imposing Q2 = 1 and S = 2|P | yields,
respectively, the same conditions as found for the steady
bifurcations from the PrWA and PrWB branches listed
in table IX, confirming that the PrWG solution indeed
links these two branches.

The invariants of the stability matrix are

TG = 2Rl0 + S (Ar + 2Br)

=
2 (σS (Ar + 2Br) + l0σR)

ΣG
,

DG = 8ΣGDrl3R
2(4P 2 − S2)(Q2 − 1),

=
32

Σ3
Gl3

σSσR
(
A2

rσS +Drl3σR
)
(DrσR + σSl3)

IG =
4Ar

Σ2
G

(
2(Br −Ar)σ

2
S −D2

rσ
2
R

)
+
σSσR
Σ2

Gl3

(
4Dr(2ArBr − 3l23) + 4l0l3(Ar + 2Br)

)
−4

σSσR
Σ2

Gl3

(
(Ar + 2l1)(ArDr + Crl3)

)
IIG = − 8

Σ3
G

(
D2

r l0σ
3
R + 4A2

rBrσ
3
S

)
+
8DrσSσ

2
R

Σ3
Gl3

(
2ΣB + l3(ΣA − 4BrDr)− l0(A

2
r + l23)

)
+
8σ2

SσR
Σ3

Gl3

(
Arl3ΣG − 6BrDrl

2
3

)
+
8σ2

SσR
Σ3

Gl3
A2

r

(
DrAr + 2Dr(l1 −Br)− 2l3l0

)
.

(59)

The determinant DG only vanishes at the termination
points, that is, whenever Q2 = 1 or S = 2|P |, which
rules out the possibility of a steady state bifurcation.
Thus there can only be Hopf bifurcations along the PrWG

branch. The frequency Ω solves the following equations
obtained from the characteristic polynomial

Ω4 − IIGΩ
2 +DG = 0, TGΩ

2 − IG = 0 , (60)

leading to the following sixth order equation in terms of
λs and λh:

II2G − IIGIGTG + T 2
GDG = 0 . (61)

E. A robust heteroclinic cycle

The isotropy lattice (see fig. 9) of the degenerate case
under discussion suggests the possibility that new hete-
roclinic cycles may exit. One of the most intriguing pos-
sibilities is a connection between the isotropy subspace
of Mixed Modes and the subspaces of Precessing Waves
A and B, corresponding to a cycle of type C in the clas-
sification of Krupa and Melbourne [17]. The conditions
for the existence of a robust heteroclinic cycle connecting
Mixed Modes consists in demanding that MM0 is a saddle
whose unstable manifold is of dimension one (resp. sink)
within ΣPrWB

and a sink (resp. saddle) within ΣPrWA
.

Then MMπ would need to be a sink (resp. saddle) within
ΣPrWB

and a saddle (resp. sink) within ΣPrWA
. How-

ever, for the mixed mode MMπ to be a saddle within
ΣPrWA

and the mixed mode MM0 to be a sink it is nec-
essary that σπA

− σ0A < 0 with Drl3 < 0, conditions
that indicate that there is a fixed point within the invari-
ant subspace ΣPrWA

, i.e. PrWA (resp. PrWB). Despite
the existence of a fixed point within the invariant sub-
space ΣPrWA

(resp. ΣPrWB
), a robust heteroclinic cycle

may still exist, cf. [21] In the case of an invariant fixed
point subspace of dimension two the existence of hetero-
clinic cycles relies on the use of the Poincaré-Bendixson
theorem, see for instance [18]. In this case the fixed-
point subspace is required to be free of any other fixed
point other than those connected by the heteroclinic cy-
cle. Instead when the dimension is three, one may use
the invariant sphere theorem, or more generally a Lya-
punov functional to establish attraction. In our case the
presence of a robust heteroclinic cycle requires that the
coefficients Cr ± Dr and 2l1 ± l3 should both be posi-
tive, since otherwise the Precessing Waves A and B are
globally attractive except possibly within a ball of size
O(λs, λh) in the subspace R,S, P . These conditions are
listed in table X. Note that our reasoning does not ex-
clude the existence of a small heteroclinic cycle within
the O(λs, λh) ball near PrW, although such a state (if it
exists) would require a larger set of defining conditions
and would be restricted to a small region of phase space.

If the conditions listed in table X are satisfied then
there exists a robust heteroclinic cycle between mixed
modes, which bifurcates to a 3FW in the case Ai−2l2 ̸= 0
and Di = 0, and to a PuW or 3FW in the case with
Ai − 2l2 ̸= 0 and Di ̸= 0, see fig. 10. Finally, the ap-
plication of the theory of Krupa and Melbourne [17] also
allows one to establish the existence of heteroclinic cycles
between standing waves and mixed modes, whose exis-
tence and stability conditions are listed in table X. As
for the heteroclinic cycles between mixed modes, these
heteroclinic cycles persist in the form of limit cycles of
the polar normal form when the degeneracy conditions
are not satisfied, see fig. 11.
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TABLE X: Defining conditions for structurally and asymptotically stable heteroclinic cycles connecting mixed
modes or standing waves and a mixed mode.

Name of solutions Cond. of existence Asymptotic stability
(comments) (Asymp. stable if either i-a) or i-b) )

HetMM0−MMπ

Stable radial dir. ∆+ > 0, ∆− > 0, l0 < 0, Ar + 2Br < 0 i-a) σπA + σπB < 0,
Sink-saddle conditions σ0Aσ0B > 0, σπAσπB < 0, l3Dr < 0, ArDr > 0, i-b) σ0A − σ0B > 0
Non-attractivity of PrW 2l1 ± l3 > 0, Cr ±Dr > 0

HetSW−MMπ

Stable radial dir. ∆− > 0, l0 < 0, Ar + 2Br < 0, Ar > 0 i-a) 2
(
2Br +Ar

)
λs −

(
2l1 −Ar

)
λh > 0

SW saddle in Fix(ΣMMπ ) σ−
SW > 0, σ+

SW < 0 i-b) σπA + σπB < 0
MMπ saddle in Fix(ΣPrWB ) σπAσπB < 0, ArDr > 0

HetSW−MM0

Stable radial dir. ∆+ > 0, l0 < 0, Ar + 2Br < 0, Ar > 0 i-a) 2
(
2Br +Ar

)
λs −

(
2l1 −Ar

)
λh > 0

SW saddle in Fix(ΣMM0) σ−
SW < 0, σ+

SW > 0 i-b) σπA − σπB > 0
MM0 saddle in Fix(ΣPrWB ) σ0Aσ0B > 0, ArDr < 0

r0

r 1
+

r 2

MM0

M
M
:

(a) A-projection of PuW

r2 ! r1

r 1
+

r 2

MM0

MM:

(b) A′
0-projection of PuW

FIG. 10: Heteroclinic cycle between MMπ and MM0 in
the polar normal form (9) with

Ai − 2l2 = Di = sinΨ = 0 (black line) and
corresponding results when Ai − 2l2 ̸= 0 and Di = 0
(red line) or Di ̸= 0 and Ai − 2l2 = 0 (blue line).

r0

r 1
+

r 2

MM:

S
W

(a) A-projection of PuW

r2 ! r1

r 1
+

r 2

MM:

S
W

(b) A′
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FIG. 11: Heteroclinic cycle (black) between MMπ and
SW in the polar normal form (9) with

Ai − 2l2 = Di = sinΨ = 0 (black line) and
corresponding results with Ai − 2l2 ̸= 0 (red line) or

Di ̸= 0 (blue line).

VI. NUMERICAL EXPLORATION OF THE
THIRD-ORDER NORMAL FORM (9)

The section V has shown the existence of multiple
fixed points with additional symmetries, e.g. PrWA

and PrWB , in the degenerate case (equivariant under
the group O(2) × Z2 × S1). The additional Z2 symme-
try is characteristic of mode interactions in O(2) sym-
metric systems with strong resonance conditions (1:2
[21], 1:3 [22]). Departure from the degeneracy condition
(Ai − 2l2 = Di = 0) breaks this additional Z2 symmetry
and may be responsible for destroying the HetSS−SW het-
eroclinic cycle, leading to more complex dynamics. This
section is devoted to the numerical exploration of the de-
generate case Ai − 2l2 = Di = 0 and the implications of
the departure from this condition (Ai − 2l2 ̸= 0 and/or
Di ̸= 0). For this purpose, we choose generic values for
the normal form coefficients, listed in table XI. These
coefficients are chosen in such a way that primary bifur-
cations, i.e., bifurcations leading to SS, SW and RW are
supercritical, and the flow is globally stable, that is, there
is no finite-time blow-up.
As the bifurcation parameter, we have selected the

polar angle θ such that the unfolding parameters are
λS = ρ cos θ and λH = ρ sin θ, with ρ = (0,∞) and
θ ∈ [0, 2π). In contrast to [21] the bifurcation diagram
barely depends on ρ, and we have fixed the value of ρ
at ρ = 0.5. The numerical continuation of the polar
normal form is carried out with the numerical contin-
uation software MATCONT [23]. In the following, we
will show the bifurcation diagrams associated to the de-
generate and non-degenerate cases. There are two ma-
jor differences. First, the two connected branches of
symmetric Precessing Waves (PrWA and PrWB) are a
characteristic feature of the degenerate case (symmetry
O(2) × Z2 × S1). In the non-degenerate case, these two
branches split into two disconnected branches of general
Precessing Waves PrWG. Secondly, in the degenerate

TABLE XI: Cubic coefficients of the normal form.

l0 l1 l3 Ar Br Cr Dr

−6.19 −1.4 −1.7 0.96 −1.08 4 10
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FIG. 12: Bifurcation diagram in the degenerate case
when ρ = 0.5, showing |r| =

√
r20 + r21 + r22 as a

function of the angle θ.

case we observe HetSS−SW cycles, which break apart as
the orbit intersects the invariant subspace r1 = r2. In-
stead, in the non-degenerate case we have identified com-
plex heteroclinic cycles around HetPrWA

. Such a feature
was also observed by Porter and Knobloch [21], who con-
cluded that the transition from HetSS−SW cycles to this
second set is a characteristic of systems with O(2) × Z2

symmetry where the Z2 symmetry is weakly broken.

A. The degenerate case Ai − 2l2 = Di = 0

Figure 12 shows the bifurcations of the fixed point
branches of the polar normal form with the parame-
ters listed in table XI and the degeneracy conditions
Ai − 2l2 = Di = 0. Along this particular path, the
trivial state first loses stability at θ = −π/2 in a primary
pitchfork bifurcation to the SS mode, which terminates
at θ = π/2. The SS mode gives birth to the MM0 branch
when θ = arctan (Cr +Dr)/l0 ≈ −1.15 and to the MMπ

branch when θ = arctan (Cr −Dr)/l0 ≈ 0.77 (table V).
The mixed mode MM0 subsequently produces the PrWA

branch in a symmetry-breaking bifurcation when σ0A = 0
(table IX) and then terminates on the SW branch. A
magnified visualization is displayed in fig. 13(a), where
we can observe the PrWA which terminates on the MMπ

branch and eventually gives birth to a general precessing
wave PrWG via a symmetry-breaking bifurcation when
σAG = 0. The PrWG mode experiences a Hopf bifurca-
tion that leads to a 3FW (blue point in fig. 12). fig. 14 il-
lustrates a stable periodic orbit (3FW) with a thick black
line and the stable manifold of PrWA with a thin gray
line. The existence of a global attractor (PrWA) in the
invariant subspace r1 = r2 prevents the existence of a
true heteroclinic cycle HetSS−SW , but allows the exis-
tence of shadowing stable periodic orbits that approxi-
mate it, see fig. 14. These orbits exist in 0.52 < θ < 0.592
and collapse in a global bifurcation when the limit cycle
intersects the invariant subspace r1 = r2 at θ ≈ 0.592.
Once a trajectory intersects the r1 = r2 subspace, it is
trapped within it and so is attracted to the only attrac-

tor in this subspace, i.e., the PrWA state. The same
phenomenon occurs in the small region of coexistence of
MMπ and the heteroclinic cycle, 0.78 < θ < 0.82. The
PrWG branch terminates on the PrWB branch, which
connects RW and MMπ. Finally, the MMπ branch is
stable between its endpoint on the SW branch and its
symmetry-breaking bifurcation that leads to the PrWB

branch. For 0.82 < θ ≤ π the only stable state is the SW
branch.

B. Non-degenerate case Ai − 2l2 = −1, Di = 0.35

The general picture of the bifurcation scenario, de-
picted in fig. 12, remains qualitatively unchanged. How-
ever, the Precessing Wave branches are modified. We
first examine the case when one of the two degener-
acy conditions is still satisfied. The case Ai − 2l2 = 0
but Di ̸= 0 is illustrated in fig. 13(b) and reveals the
existence of two distinct PrWG branches. This case
corresponds to an imperfect bifurcation, where the two
symmetry-breaking pitchfork bifurcations leading to the
PrWG branch in the degenerate case are replaced by a
saddle-node bifurcation on each branch. The second case,
Di = 0 but Ai − 2l2 ̸= 0, illustrated in fig. 13(c), shows
the presence of PrWA and PrWG branches, the latter
replacing the symmetric PrWB branch. These branches
connect via a transcritical bifurcation, which is respon-
sible, in this case, for the stability of the whole upper
section of the PrWG branch since no Hopf bifurcation
takes place.

We next turn our attention to the non-degenerate case
Ai − 2l2 ̸= 0, Di ̸= 0. The bifurcation diagram of
the fixed points of the polar normal form is depicted in
fig. 15. The figure displays two disconnected branches
of general Precessing Waves PrWG. The first of these,
referred to as PrWG,1 in the figure, becomes unstable
through a Hopf bifurcation, leading to a 3FW branch
(not shown). The second PrWG branch, labeled PrWG,2,
bifurcates from and terminates on the MMπ branch with
a saddle-node bifurcation in between: the upper section
is stable, whereas the lower is unstable. Because of the
symmetry under reflection κ, there is in fact a pair of
such saddle-node bifurcations, PrW±

G,2, both occurring
at θ = θSN ≈ 0.663445. Moreover, each is of Saddle-
Node-in-a-Periodic-Orbit (SNIPER) type but with com-
plex leading eigenvalues at the fold points PrW±

G,2: (0,

−0.6795, −0.0182 ± 0.4418i). For a study of this sit-
uation in the absence of κ symmetry, see [24]. In the
presence of this symmetry, this case can either lead to a
pair of symmetry-related homoclinics to PrW±

G,2 or, as

in this case, to a heteroclinic cycle connecting PrW+
G,2

to PrW−
G,2 and vice versa, a consequence of intertwined

nature of the stable and unstable manifolds of PrW±
G,2.

In the former case the near-homoclinic orbit to the left of
PrW±

G,2 contains a certain number of decreasing oscilla-

tions as it approaches and leaves PrW±
G,2, the number of
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FIG. 13: Bifurcation diagram in the degenerate case when ρ = 0.5, showing |r| =
√
r20 + r21 + r22 as a function of the

angle θ. Legend: Solid (dashed) lines are stable (unstable) fixed points. Symmetry-breaking bifurcations are
illustrated with gray points and Hopf bifurcations with blue points. Note: in (a) as well as in fig. 12 the PrWG

branch has been artificially displaced upwards to visually differentiate it from the PrWA branch.
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FIG. 14: Example of a heteroclinic cycle SS-SW (thick
line). The gray line corresponds to the stable manifold

of PrWA.

these oscillations depending on the speed with which the
trajectory passes through the PrW±

G,2 neighborhood, and
hence on the distance of θ from θSN . In the latter case the
unstable manifold associated with the degenerate eigen-
value injects the trajectory into the image fold point and
the same local behavior there leads to reinjection back
into the original fold, generating a κ-symmetric hetero-
clinic cycle, cf. [25]. Figure 16 shows such an orbit in two
projections, computed for θ just below θSN ≈ 0.663445.
At this θ the PrW±

G,2 points are absent and the orbit
shown is actually a long period periodic orbit. Figure 17a
shows the period of such orbits as a function of θSN − θ,
confirming the expected relation T ∼ (θSN−θ)−1/2. This
divergence is a consequence of a slowdown of the trajec-
tory in the vicinity of the phase space location where the
PrWG,2 appear when θ increases through θSN , resulting

θ

|r
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M
M

π
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FIG. 15: Bifurcation scenario in the non-degenerate
case showing |r| =

√
r20 + r21 + r22 as a function of the

angle θ with the same legend as in fig. 13. The end
point of PrWG,1 is located at θ ≈ 0.6581, i.e., below
θSN but above the global bifurcation at θ ≈ 0.6454.

in increased accumulation of turns as this point is ap-
proached. Note that these orbits inherit the stability of
the (upper) PrWG,2 branch (cf. fig. 15) and hence repre-
sent attractors of the system.
Figure 18 shows sample attractors found on decreas-

ing θ further. Figure 18a shows a stable symmetric orbit
at θ = 0.663, followed by asymmetric chaotic attractors
(with a positive Lyapunov exponent) generated with in-
creasing distance from θSN . The absence of chaotic states
near θSN is a consequence of the fact the flow in this re-
gion is locally contracting.
To understand the origin of these states, we examine

the behavior of a typical periodic orbit associated with
the SNIPER bifurcation. As already explained this orbit
depends sensitively on the value of θ < θSN . In fig. 19a
we show the period T of this orbit as a function of θ
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FIG. 16: Heteroclinic cycle at θSN ≈ 0.663445.

obtained using numerical continuation. This period di-
verges as θ → θSN from below and the orbit approaches
the heteroclinic cycle shown in fig. 16. As θ deceases
the period T decreases, although this decrease is inter-
rupted by a series of back-to-back folds. Each such pair
is responsible for the elimination of one small amplitude
turn of the trajectory (not shown), resulting in a gradual
unwinding of the trajectory. As θ decreases towards the
leftmost fold and beyond, the trajectory develops small
loops in the vicinity of PrWG,1 (fig. 20) and its period be-
gins to diverge again, this time logarithmically (fig. 17b),
indicating approach to a heteroclinic connection involv-
ing PrWG,1 and located at θ = θhet ≈ 0.6454. Since
the leading unstable eigenvalues of PrWG,1 at this pa-
rameter values are complex, 0.2446 ± 0.3661i, while the
leading stable eigenvalue is real, −0.0251, these points
are both saddle-foci. The complex unstable eigenvalues
account for the oscillatory approach to the global bifur-
cation at θ ≈ 0.6454 while the fact that the flow near
PrWG,1 is locally expanding implies that we should ex-
pect stable chaotic dynamics near this parameter value,
as in the classical example of Shil’nikov where the signs
of the eigenvalues are reversed [26–28].

In fig. 19a the solid line tracks the period of the κ-
symmetric orbit. As θ → 0.6454 from above, this or-
bit collides with PrWG,1, forming a heteroclinic con-
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FIG. 17: (a) Evolution of the period of the stable limit
cycles shadowing the heteroclinic cycle as a function of
the distance θSN − θ to the saddle-node bifurcation. (b)
Evolution of the period near the heteroclinic bifurcation

at θhet, where σhet = −0.0251 is the leading stable
eigenvalue of the PrWG,1 fixed point.

nection from PrWG,1 to its image under κ and back
again. Near θhet this orbit is accompanied by back-to-
back symmetry-breaking bifurcations, generating asym-
metric periodic orbits (fig. 19b). These asymmetric orbits
are free to period-double into chaos, resulting in ’bubbles’
of chaotic behavior, as described in [29] and references
therein. Close to the primary heteroclinic bifurcation
these bubbles ’burst’ via the formation of pairs of sub-
sidiary homoclinic orbits. The red dashed and thin solid
lines in fig. 19b show examples of this generic behavior
in our problem; fig. 19c compares the homoclinic orbit
at the green dashed asymptote with the corresponding
period-doubled orbit on the red dashed branch at the
same θ value. Further details are omitted. Thus, the pri-
mary symmetric periodic orbit is associated with a num-
ber of chaotic intervals located around subsidiary homo-
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FIG. 18: Stable attractors in a (r0, r1, r2) projection for (a) θ = 0.663 (symmetric periodic orbit); (b) θ = 0.647
(asymmetric orbit); (c) θ = 0.645 (asymmetric orbit); (d) θ = 0.643 (asymmetric orbit). The symmetry-related

PrWG,2 fixed points corresponding to the saddle-node at θ ≈ 0.663445 are indicated by red points, with the PrWA

point (present in the degenerate case only) depicted as a blue point; these are shown for orientation only.

clinic orbits originating in global bifurcations of asym-
metric orbits associated with it, cf. fig. 18. In particular,
stable chaotic motion is also observed for θ below the
primary heteroclinic bifurcation at θhet ≈ 0.6454.
We mention that the periodic orbit originating from

the Hopf point on the PrWG,1 branch (θ ≈ 0.3841,
blue point in Fig 15) is stable from the Hopf point to
θ ≈ 0.4518, where the first of several Neimark-Sacker
bifurcations takes place. These are interspersed with ad-
ditional global bifurcations and intervals of chaos as θ
increases towards θhet ≈ 0.6454. Some sample solutions
are shown in fig. 21 to whet appetite. The details depend
on the parameters used and are omitted.

VII. NORMAL FORM REDUCTION

The process of reducing the governing equations to nor-
mal form near a multiple bifurcation is based on center
manifold reduction followed by a series of near-identity
variable changes to simplify the dynamical equations on
the center manifold. The resulting equations are then
unfolded by introducing parameters that break apart
the multiple bifurcation in a generic way. In infinite-
dimensional problems, such as those arising in fluid me-
chanics, it is preferable to employ multiple scales tech-
niques to compute both the normal form and the coeffi-
cients within it as part of the same calculation. We em-
ploy here this technique to determine all the coefficients
in the third-order normal form (8).

First, let us introduce the following formal expression
for the governing equations on a domain Ω:

B
∂q

∂t
= F(q,η) ≡ Lq+N(q,q) +G(q,η), x ∈ Ω ,

Dbcq(x) = q∂Ω, x ∈ ∂Ω .
(62)

Here ∂Ω represents the domain boundary. This form
of the governing equations takes into account a linear
dependence on the state variable q through L and a
quadratic dependence on state variable and the param-
eters η through the operators G(·, ·) and N(·, ·). Equa-
tion (62) formally includes the incompressible Navier–

Stokes equations written in cylindrical coordinates for
the TFC and WFA problems, whereas for WFA-MC one
must consider the Boussinesq approximation of the in-
compressible Navier–Stokes equations written in cylindri-
cal coordinates as well. The set of parameters η ∈ RNp ,
whereNp is the number of parameters, is composed of the
two dimensionless angular velocities of the cylindrical an-
nulus for TFC, the Reynolds number for WFA and the
Reynolds, Richardson and Prandtl numbers for WFA-
MC. In the following, we will consider the most general
case, that is, the WFA-MC case where the vector of pa-
rameters takes the form η ≡ [η0, η1, η2]

T . Finally, with-
out loss of generality, we suppose that the dependence
of the solution on the trace (solution restricted to the
boundary of the domain) is linear, i.e. we take Dbc to
be a linear boundary condition operator. One can also
consider the dependence of the boundary conditions on
parameters, that is either Dbc(η) or q∂Ω(η), which may
be used, for instance, for modeling of a moving wall. For
the sake of simplicity and without loss of generality, this
case is not considered.

A. Multiple scales Ansatz

The multiple scales expansion of the solution q of
eq. (62) consists of an expansion of eq. (1) in powers
of a small parameter ε≪ 1:

q(t, τ) = Q0 + εq(ε)(t, τ) + ε2q(ε2)(t, τ) +O(ε3) (63)

Parameters η are assumed to be of second order, i.e.
ηi = O(ε2) for i = 0, 1, 2. The expansion (63) en-
compasses a two-scale expansion of the original time,
t 7→ t + ε2τ , that incorporates the fast time scale t of
the self-sustained instability and the slow time scale τ
of the evolution of the amplitudes ai(τ) in eq. (1), for
i = 0, 1, 2. The resulting expansion of the left side of
eq. (62) up to third order is as follows:

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+B

∂q(ε)

∂τ

]
(64)
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FIG. 19: (a) Evolution of the period T of a symmetric periodic orbit born in the SNIPER bifurcation θ ≈ 0.663445
and terminating in a heteroclinic bifurcation at θ ≈ 0.6454 (thick solid line). Secondary branches of asymmetric

states are displayed in thin lines: solid line for the branch whose period diverges at θ ≈ 0.64377 and dashed lines for
the other branches, see panel (b) for more detail. The secondary branches are accompanied by back-to-back

period-doubling cascades (three period-doubling points are indicated with solid circles of the same color as the
branch) which open up via the formation of subsidiary homoclinic orbits as in panel (c), black line; the superposed
red curve shows an accompanying period-doubled solution. Portraits (d-f) display the (r1, r2) projection at θ = 0.65

for the dashed magenta, blue, and orange branches showing a symmetric and two asymmetric periodic orbits,
respectively. The location of PrWG,1 is indicated with small circle in (c-f). Only (c) is close to homoclinic; the

proximity of orbit (e) to the lower fixed point is a projection effect.
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FIG. 20: The periodic orbit at the seventh and eighth
folds from the right, with a period-doubling bubble in
between (not shown). (a) θ = 0.6437. (b) θ = 0.6466.

while the right side is

F(q,η) = F(0) + εF(ε) + ε2F(ε2) + ε3F(ε3) . (65)

The expansion eq. (65) will be detailed at each order.

1. Order ε0

The leading order solution Q0 of the multiple scales
expansion eq. (63) is the steady state of the governing
equations evaluated at the threshold of instability, i.e.
η = 0,

0 = F(Q0,0) , x ∈ Ω ,
DbcQ0(x) = Q0,∂Ω , x ∈ ∂Ω .

(66)
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FIG. 21: (a) Phase portrait of a near-homoclinic orbit
to the SW state in the (r0, r1, r2) space at θ = 0.452,
and (b) the corresponding time series showing r0(t)

(red), r1(t) (green) and r2(t) (blue). Near the
homoclinic connection r1 approaches r2 and r0 falls to

zero. (c) A trajectory at θ = 0.457 in the
(Re(a0), Im(a0), r2) space showing that the trajectory
intermittently visits SW states with different phases ϕ,
each visit resulting in a switch between an oscillation
about one PrWG,1 state to an oscillation about the
other; red circles represent the group orbit of the two

PrWG,1 states while the blue circle represents the group
orbit of the SS states [30]. (d) Chaotic attractor at
θ = 0.49 (thin dashed grey line) together with an
(unstable) κ-symmetric periodic orbit computed at

θ ≈ 0.4896.

2. Order ε1

The first order correction q(ε)(t, τ) in the multiple
scales expansion of eq. (63) is composed of the eigen-
modes of the linearized system

q(ε)(t, τ) ≡ Re
(
a0(τ)e

−im0θq̂0

)
+ Re

(
a1(τ)e

−iωte−im1θq̂1

)
+ Re

(
a2(τ)e

−iωtei−m2θq̂2

)
,

(67)

where the reflection symmetry in O(2) imposes the re-
quirement m2 = −m1.
Each term q̂ℓ in the first order expansion (67) solves

the corresponding linear problem:

J(ωℓ,mℓ)q̂ℓ =
(
iωℓB− ∂F

∂q |q=Q0,η=0

)
q̂ℓ, x ∈ Ω,

Dbcq̂ℓ(x) = 0, x ∈ ∂Ω ,
(68)

where ∂F
∂q |q=Q0,η=0q̂ℓ = Lmℓ

q̂ℓ + Nmℓ
(Q0, q̂ℓ) +

Nmℓ
(q̂ℓ,Q0). The subscript mℓ indicates the azimuthal

wavenumber used for the evaluation of the operator.

3. Order ε2

The second order expansion term q(ε2)(t, τ) is deter-
mined from the resolution of a set of forced linear sys-
tems, where the forcing terms are evaluated from first
and zeroth order terms. The expansion in terms of am-
plitudes ai(τ) of q(ε2)(t, τ) is assessed from term-by-term
identification of the forcing terms at the second order.
The nonlinear second order terms are

F(ε2) ≡
2∑

j,k=0

(
ajakN(q̂j , q̂k)e

−i(mj+mk)θe−i(ωj+ωk)t + c.c.
)

+

2∑
j,k=0

(
ajakN(q̂j , q̂k)e

−i(mj−mk)θe−i(ωj−ωk)t + c.c.
)

+

2∑
ℓ=0

ηℓG(Q0, eℓ) ,

(69)
where eℓ is an element of the orthonormal basis of RNp ,
a vector composed of zeros except at the position ℓ where
it is equal to unity.
Since no quadratic combination of elements in eq. (67)

results in resonant terms, the second order term can be
expanded as

q(ε2) ≡
2∑

j,k=0
k≤j

(
ajakq̂j,k+ajakq̂j,−k+ c.c.

)
+

2∑
ℓ=0

ηℓQ
(ηℓ)
0 ,

(70)

with the rules q̂j,k = q̂k,j and q̂−j,−k = q̂j,k. Note

the slight abuse of notation with q̂−0 = q̂0. Terms q̂j,j

are harmonics of the flow, q̂j,k with j ̸= k are coupling
terms, q̂j,−j are harmonic base flow modification terms

and Q
(ηℓ)
0 are base flow corrections due to the assumed

departure of the parameter ηℓ from the critical point mea-
sured by ε.
Finally, the second-order terms are computed by solv-

ing the following nonresonant system of equations,

J(ωj+ωk,mj+mk)q̂j,k = F̂
(j,k)
(ε2) , (71)

where F̂
(j,k)
(ϵ2) ≡ N(q̂j , q̂k) +N(q̂k, q̂j) and

J(0,0)Q
(ηℓ)
0 = G(Q0, eℓ). (72)

4. Order ε3

At third order resonant terms are generated and these
lead to secular (nonperiodic) terms in the expansion. We
eliminate these terms by imposing a solvability condi-
tion on the system via the Fredholm alternative. This
condition determines the required normal form at third
order in ε. Specifically, the linear terms λs and λh are
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determined as follows

λs =
⟨q̂†

0, F̂
(a0)
(ϵ3) ⟩

⟨q̂†
0,Bq̂0⟩

, λh =
⟨q̂†

1, F̂
(a1)
(ϵ3) ⟩

⟨q̂†
1,Bq̂1⟩

=
⟨q̂†

2, F̂
(a2)
(ϵ3) ⟩

⟨q̂†
2,Bq̂2⟩

, (73)

while the (real) cubic coefficients li for i = 0, 1, 2, 3 are
given by

l0 =
⟨q̂†

0, F̂
(a0|a0|2)
(ϵ3) ⟩

⟨q̂†
0,Bq̂0⟩

, l3 =
⟨q̂†

0, F̂
(a0a1a2)
(ϵ3) ⟩

⟨q̂†
0,Bq̂0⟩

l1 − il2 =
⟨q̂†

0, F̂
(a0|a1|2)
(ϵ3) ⟩

⟨q̂†
0,Bq̂0⟩

, l1 + il2 =
⟨q̂†

0, F̂
(a0|a2|2)
(ϵ3) ⟩

⟨q̂†
0,Bq̂0⟩

.

(74)
Finally, the complex coefficients A,B,C and D are given
by

B =
⟨q†

1, F̂
(a1|a1|2)
(ϵ3) ⟩

⟨q̂†
1,Bq̂1⟩

, A+B =
⟨q†

1, F̂
(a1|a2|2)
(ϵ3) ⟩

⟨q̂†
1,Bq̂1⟩

,

C =
⟨q†

1, F̂
(a1|a0|2)
(ϵ3) ⟩

⟨q̂†
1,Bq̂1⟩

, D =
⟨q†

1, F̂
(a2

0a2)

(ϵ3) ⟩

⟨q̂†
1,Bq̂1⟩

.

(75)
The forcing terms associated with solvability condi-

tions eqs. (73) to (75) are detailed in appendix A1.

VIII. CONSTRUCTION OF BIFURCATION
DIAGRAMS

We now explain how the results derived in the pre-
vious section can be used to construct consistent bifur-
cation diagrams. The method is similar to that used in
Hirschberg & Knobloch [3] and is explained in fig. 22. As
illustrated in this figure, the conditions for the occurrence
of the various bifurcations can be interpreted as lines in
the (λs, λh) plane. For example, the primary steady-
state bifurcation occurs along the line λs = 0, which is
the horizontal axis in this representation. Similarly, the
primary Hopf bifurcation occurs along the line λh = 0,
which is the vertical axis. The conditions relevant to the
birth of mixed modes also correspond to straight lines,
as displayed in the figure. For both the wake problem
(WFA or WFA-MC) and the TCF problem, variation of
the base-flow parameters defines a path in the (λs, λh)
plane. The bifurcation diagram can then be constructed
by considering the successive crossings of this path with
the lines defining the bifurcations.

Let us consider first the bifurcation scenario of the
WFA-MC case as a function of Reynolds numbers ηRe

and ηRi, at a constant distance in terms of the sec-
ond parameter from the organizing centre. We denote
by ηRe|Ri=Ric the path followed at a constant Richard-
son number equal to that at which the unsteady and
steady modes become simultaneously unstable, i.e., at
the same critical Reynolds number. Similarly, we denote
by ηRe|Ri=0 the straight line path from quadrant III (de-
fined by λs < 0, λh < 0), traversing quadrant IV (λs > 0,

λh < 0), and then crossing into quadrant I (λs > 0,
λh > 0). This path is relevant to the wake problem
(WFA) for increasing the Reynolds number if we assume
a linear dependence of the form eq. (13). When following
this path, the first bifurcation is the primary bifurcation
leading to the SS mode. There are two possible secondary
bifurcations on this branch, leading to MM0 and MMπ

and these occur along the lines −l0λh +(Cr ±Dr)λs = 0
with positive sign for MM0 and negative sign for MMπ.
The sign of Dr indicates which of these bifurcations oc-
curs first along the given path. For example, ifDr < 0, as
displayed on the figure, the bifurcation to MMπ occurs
first. Moreover, if ∆− > 0 (as assumed in the figure),
this bifurcation is supercritical and gives rise to a sta-
ble branch. The bifurcation from SS to MMπ may occur
subsequently, as found in the figure, but the branch born
at this bifurcation is necessarily unstable, according to
the considerations in section IVC.
Similarly, the lines −(2Br+Ar)λs+(l1± l3)λh = 0 in-

dicate secondary bifurcations from SW to MM0 (positive
sign) and MMπ (negative sign). Starting from the pure
SW mode and following the prescribed path backward,
the sign of l3 lets us distinguish which of these lines will
be crossed first. For example, if l3 < 0, as displayed on
the figure, the bifurcation to MMπ occurs first, leading
to a stable branch if ∆ > 0.
Figure 22b exhibits the case corresponding to l3 < 0,

Dr < 0, ∆+ > 0, ∆− > 0, the situation relevant to wake
flow past a fixed disk. The figure displays the bifurcation
diagram for a disk of aspect ratio χ = 10. For more
details, see section VIII B.

In the following we analyze the predicted transition
behavior of the for flow past a fixed sphere and a fixed
disk.

A. Mixed convection in the flow past a sphere

Let us revisit the problem of pattern formation behind
a sphere falling through a stratified fluid. In our for-
mulation the sphere is held fixed, with flow past it (the
WFA-MC problem). This problem has many practical
applications in engineering such as cooling, heating [31],
sedimentation [32], melting [33], combustion [34], vapor-
ization [35]. A heated sphere represents a heat source
embedded within the physical domain, where the solid
body is subjected to forces of hydrodynamic and thermal
origin. There are two main cases of interest, the case of
a hot falling sphere where the fluid within the wake is
accelerated with respect to the spherical body. Such a
configuration is called assisting flow. The opposite case,
where the wake of a hot ascending spherical particle is
decelerated by buoyancy effects, is referred to as oppos-
ing flow. Kotouc et al. [31] studied numerically both
configurations for two Prandtl numbers, Pr = 0.72 and
Pr = 7. The assisting flow case displays an organising
center of Hopf-Hopf type with azimuthal wavenumbers
m = 1 and m = 2. The opposing flow configuration ex-
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FIG. 22: Illustration of the construction of the stability diagram for the WFA problem with a fixed disk of aspect
ratio χ = 10. (a) The unfolding plane (λs, λh). Dashed lines indicate the loci of bifurcations from SS and SW to
MM0,π. The paths labeled ηRe|Ri=Ric and ηRe|Ri=0 are the paths followed in this plane for Ri = Ric and Ri = 0,

respectively. (b) Bifurcation diagram corresponding to the ηRe|Ri=0 path. See section VIII B for details.

TABLE XII: Location of the codimension-two point and the corresponding Strouhal number at unsteady onset,
together with the linear coefficients in the normal form for the WFA-MC flow past a sphere or a disk.

Case Rec Ric Stc λs λh

Sphere 172 −0.13 8.5 · 10−2 86.7 · ηRe + 0.82 · ηRi

(
84.7− 67.9i

)
· ηRe +

(
2.19− 3.31i

)
· ηRi

Disk χ = 10 129.4 −0.069 1.07 · 10−1 76.8 · ηRe + 0.057 · ηRi

(
66.0− 25.2i

)
· ηRe +

(
0.52− 1.10i

)
· ηRi

Disk χ = 3 152.9 −0.079 9.5 · 10−2 95.3 · ηRe + 0.37 · ηRi

(
92.5− 40.0i

)
· ηRe +

(
1.10− 1.48i

)
· ηRi

hibits instead a point in the (Re,Ri) parameter space
where a steady-state mode and a pair of unsteady modes
with azimuthal wavenumber m = ±1 are simultaneously
unstable.

The opposing flow case at Pr = 0.72 displays a
large variety of patterns. The codimension-two point at
(Rec, Ric) point, see tables XII and XIII, splits the pa-
rameter space in the following sense: for Ric < Ri < 0
the primary bifurcation breaks the axisymmetry of the
steady-state solution, i.e., it corresponds to a steady-
state mode (state I in Kotouc et al. [31]); for Ri < Ric
the primary branch is a standing wave (state XIV in Ko-
touc et al. [31]), i.e., a solution with mean-zero lift force
preserving the symmetry plane. For Richardson num-

TABLE XIII: Cubic and quintic coefficients of the
normal form for the WFA-MC flow past a sphere.

l0 l1 l2 l3 Fr

−10.57 −4.57 −0.078 0.27 −201.1

A B C D Er

1.07 + 0.75i −2.8 + 3.54i −3.78 + 3.02i 0.79− 1.0i −18.10

bers Ri < Ric the observed transition to more complex
spatio-temporal patterns is explained by the interaction
between the unsteady pair of modes. In this regime the
cubic truncation is degenerate, as already explained, and
in order to lift the degeneracy between the modulated

wave states MW and ĨMM (these states are labelled XX
in Kotouc et al. and not distinguished) one must ei-
ther include higher order terms in the normal form or
introduce terms that break the O(2) symmetry, see sec-
tion IVC2. These modulated wave states then bifur-
cate further, generating general Precessing Waves. In
the study of Kotouc et al. [31], the authors did not ob-
serve PrWG, and instead identified aperiodic states, i.e.,
states that did not display any particular spatiotemporal
symmetry. This finding could be explained by a subse-
quent bifurcation towards a 3FW, although this is not
taken into account in the normal form.

When Ri > Ric a large variety of states exist. The
axisymmetric steady state loses stability with respect to
a nonaxisymmetric steady-state mode, thereby losing ax-
isymmetry. The resulting SS state then transitions into
a mixed mode MM0 that preserves reflection symme-
try and is associated with a nonzero mean lift. The
MM0 state further transitions into a general Precessing
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FIG. 23: The predicted patterns in the flow past a sphere under mixed convection (opposing flow) conditions in
parameter space. Snapshots of the reconstructed states are included.

Wave (PrWG), i.e., a state without a symmetry plane and
slowly rotating mean lift, which in turn bifurcates into a
3FW and finally to a Pulsating Wave state. These three
states are located within small regions of the parameter
space. However, they have been numerically determined:
PrWG was numerically observed by Kotouc et al. [31] for
Ri > −0.1 (state XIII) and the 3FW or PuW state were
identified for Ri ≈ −0.1 (state XIX), which is a state that
displays a temporary symmetry plane and at least two
frequency components. The Pulsating Wave state even-
tually transitions into MMπ, i.e., a mixed mode without
a symmetry plane (also state XIII in [31]). This series
of bifurcations is followed either by a standing wave, or
modulated wave modes or a Precessing Wave, which is
in qualitative accordance with the study of Kotouc et al.

B. Mixed convection in the flow past a disk

Let us now examine the transition scenario for axisym-
metric wake flow past a disk, focusing on the opposing
flow case under mixed convection conditions. This prob-
lem depends on three control parameters, the Reynolds
number Re, the Richardson number Ri, and the aspect
ratio of the disk χ, where 1/χ is the dimensionless thick-
ness.

The WFA problem for Ri = 0 and 1/χ ≈ 0 has already
been studied by Fabre et al. [36] using numerical simula-
tions and normal from coefficients fitted from the simula-
tions. The case χ = 3 was studied in detail by Auguste et
al. [37]. A more rigorous study via multiple-scale anal-
ysis was performed by Meliga et al. [38]. Later, Chrust
et al. [39] explored the flow dependence on the param-
eters (Re, χ) using numerical simulations and proposed
a classification of the patterns observed. These studies
demonstrated the importance of the disk thickness on the
transition scenario. Chrust et al. observed that, when
the thickness 1/χ is large, for instance χ = 1, the sym-
metry plane is preserved for large values of the Reynolds
number, i.e., only SS and MM0 (possibly with modu-
lated mixed modes or precessing waves) are observed be-

TABLE XIV: Cubic and quintic coefficients of the
normal form for the WFA-MC flow past a disk with

χ = 10.

l0 l1 l2 l3 Fr

−4.45 −5.94 0.92 −2.28 −50

A B C D Er

0.1− 1.29i −2.14 + 1.69i −0.64− 2.35i −1.05 + 1.10i −1
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FIG. 24: The predicted patterns in the flow past a disk with χ = 10 under mixed convection (opposing flow)
conditions in parameter space. Snapshots of the reconstructed states are included.

fore spatio-temporal chaos appears. In the limit of zero
thickness, when 1/χ ≈ 0, we will see that the transition
scenario starts with the formation of a SS pattern fol-
lowed by the breaking of the symmetry plane, leading
to a MMπ mode and eventually to standing waves SW.
At intermediate values of the thickness, a large variety of
spatio-temporal patterns may be observed, as highlighted
by the study of Auguste et al. In the present study, we
shall look for the connections between the opposing flow
case in mixed convection and the situation at Ri = 0,
in terms of the spatio-temporal patterns observed in the
flow.

Figure 25 displays the location of the codimension-two
point corresponding to the Hopf-Steady State bifurcation
obtained by varying 1/χ ∈ [0, 1]. The top panels show the
corresponding temperature distribution in space and the
growing extent of the recirculation bubble in the steady
states associated with two distinct values of the aspect ra-
tio χ of the disk. In the range of aspect ratios considered
here, the critical Reynolds number grows linearly with
the thickness 1/χ of the disk, as previously observed by
Fernandes et al. [40]. In addition, the critical Richardson
number displays a maximum around 1/χ ≈ 0.1 followed
by a linear decrease in the critical Richardson number.
In the following we shall discuss in detail the two cases
χ = 10 and χ = 3. The case χ = 10 corresponds to a

case with a relatively simple transition scenario, similar
to that explained by Meliga et al. [38]. On the other
hand, the case χ = 3 displays a larger number of spatio-
temporal structures, and is qualitatively similar to the
case of the sphere discussed in section VIIIA.

The parameter space summarizing the normal form
predictions for χ = 10 is displayed in fig. 24. In this case,
to the left of the codimension-two point (grey point in the
diagram), the trivial steady state transitions to stand-
ing waves and the subsequent bifurcations are uniquely
explained by the unsteady modes. To the right of the
codimension-two point the primary bifurcation breaks
the axisymmetry of the steady state, i.e., it generates the
SS state, followed by a periodic state with no reflection
symmetry and non-zero mean lift, i.e., the MMπ state.
The mixed mode MMπ state eventually bifurcates into a
standing wave solution, which finally bifurcates to MW
via the effect of higher order terms.

The dynamics near the organizing center for the flow
past a disk with thickness 1/χ = 1/3 is richer. As in
the previous cases, to the left of the organizing center
the transition scenario is based on the initial formation
of standing waves, followed by modulated waves and an
eventual tertiary bifurcation, not taken into account in
the normal form, leading to temporal chaos. To the
right of the organizing center the transition scenario is
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(Re ≈ 150, Ri ≈ −0.078).

qualitatively similar to that of the sphere (compare sec-
tion VIIIA and fig. 26), although in the present case the
codimension-two point is sufficiently close for the theory
to provide quantitative predictions of the transition sce-
nario. In other words, the transition scenario in the sim-
ple WFA problem of the disk with aspect ratio χ = 3 is
constrained by the dynamical structures emanating from
the organizing center at Ri ̸= 0, something that is not the
case for the sphere, see Kotouc et al. [31, Fig 4.]. Fig-
ure 27 displays the reconstruction of the lift coefficient
from the normal form at Ri = 0, in comparison to the
results obtained numerically by Auguste et al. in [37]. It

TABLE XV: Cubic and quintic coefficients of the
normal form for the WFA-MC flow past a disk with

χ = 3.

l0 l1 l2 l3 Fr

−6.19 −4.86 0.47 −2.76 −50

A B C D Er

0.56− 0.38i −2.3 + 2.3i −1.7 + 0.32i 0.79 + 0.52i −6

distinguishes five regions, with the Knit-Knot (KK) re-
gion among them. The transition begins at Re ≈ 159.4
(Re ≈ 159.8 [37]) via the formation of a steady-state pat-
tern (SS), which eventually bifurcates into a mixed mode
(MM0) at around Re ≈ 182.5 (Re ≈ 179.9 in [37]). The
MM0 state loses stability at around Re ≈ 184.5. Quan-
titatively, up to this point, the sequence of bifurcations
is reasonably well predicted with regard to the data re-
ported by [37]. The Knit-Knot region in our analysis
covers a large variety of states with similar characteris-
tics in terms of the frequency components (at least two),
and the lift coefficient CL. Auguste et al. [37] identified
this motion as temporally quasiperiodic motion result-
ing from spontaneously broken reflection symmetry. The
temporal dynamics of the KK state may be described
as the composition of a state with frequency ωh and a
low frequency state, whose frequency experiences large
variation within its region of existence (from Tp ≈ 96 2π

ωh

at Re = 185 to Tp ≈ 48 2π
ωh

at Re = 187 and then to

Tp ≈ 54 2π
ωh

at Re = 190, cf. fig. 29). This bifurcation se-
quence is followed by the appearance of the MMπ state,
estimated to be around Re ≈ 198.5 (Re ≈ 190.4 in [37])
which connects to the standing wave branch at around
Re ≈ 214 (Re ≈ 215.2 in [37]). According to theory, this
sequence of bifurcations should be followed by the forma-
tion of a modulated wave branch and precessing waves.
However, we do not discuss these patterns here due to
the lack of simulation data to compare with and because
these patterns can only be described using the fifth order
normal form whose coefficients we have not computed.
For more information, see fig. 26.
Let us return to the discussion of the Knit-Knot re-

gion. In our more detailed analysis, this state is actually
composed of several simpler states, see fig. 28. The MM0

bifurcates into a precessing wave PrWG at Re ≈ 184.5.
This precessing wave is stable up to Re ≈ 186.3, where
a saddle-node bifurcation takes place leading to a 3FW ,
denoted as 3FWA in fig. 28. The three-frequency wave is
observable only in a small interval, however, and eventu-
ally reconnects to a Pulsating Wave via a global homo-
clinic bifurcation at around Re ≈ 186.9. This Pulsating
Wave is stable up to around Re ≈ 191.9. At this stage,
we can observe two other bifurcations leading to three-
frequency waves with 3FWB (unstable) and 3FWC (sta-
ble); both of these branches reconnect to the main branch
(PuW) following a saddle node bifurcation of limit cy-
cles. The pulsating wave state finally reconnects with
the symmetry-breaking mixed mode (MMπ) branch.

IX. DISCUSSION & CONCLUSION

In this article, we have analyzed the properties of the
normal form and the bifurcation scenario relevant to the
bifurcations observed in axisymmetric wakes described
by the Navier–Stokes equation. We have shown that near
the onset of instability, it is possible to reduce the dynam-
ics via center manifold reduction, to a normal form, i.e.,
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FIG. 26: The predicted patterns in the flow past a disk with χ = 3 under mixed convection (opposing flow)
conditions in parameter space. Snapshots of the reconstructed states are included.

an ordinary differential equation, whose unfolding fully
captures the local behavior of the Navier-Stokes equa-
tion. Such a normal form inherits the discrete and con-
tinuous symmetries of the system, in the present case
O(2) symmetry. We have shown that this approach, car-
ried out in the vicinity of a steady state-Hopf interaction,
suffices to predict much of the observed behavior.

Our analysis of the generic steady state-Hopf case re-
lied on a reduction to polar coordinates. The fixed point
solutions of the normal form, e.g. pure modes, mixed
modes, have been observed in a variety of fluid flows, in-
cluding Taylor-Couette and wake flows. Here, we have
attempted to provide a complete description of the fixed
point solutions of the normal form, as well as possible bi-
furcations to periodic solutions of the polar normal form,
e.g. such a two- and three-frequency waves.

Particularly noteworthy is our discovery of robust, po-
tentially stable, heteroclinic cycles in this mode interac-
tion. In previous studies [41, 42], self-sustained processes
have been related to a three-step process involving rolls
advecting streamwise velocity, leading to streaks which
once unstable lead to wavy perturbations whose nonlin-
ear interaction with itself feeds the rolls. In terms of the
mode interaction, the self-sustained cycle described by
Dessup et al. [41] corresponds to a HetSS−SW cycle or
to an orbit that shadows it. In this sense, one could ex-

pect that other, more complex dynamics, for instance a
HetPrWA

cycle, may also be observed in the bifurcation
scenario of real fluid systems. We mention that the indef-
inite increase in period associated with the approach to
an attracting robust heteroclinic cycle cannot in general
be seen in numerical integration of the normal form, on
account of rounding error. Instead, the solution trajec-
tory settles into a statistical limit cycle with a finite mean
period [43]. This is even more so for partial differential
equations [44] and in experiments where the presence of
noise prevents approach to such a cycle [45]. This fact
points to the importance of fluctuations in applications
of the theory to fluid dynamics problems, as also empha-
sized in [25] in connection with the SNIPER bifurcation.

We have applied here the general theory to several dis-
tinct fluid flows and used it to explore the bifurcation
scenario of wake flows behind a sphere or disk falling
through a constant density fluid and a vertically strati-
fied fluid (problems WFA and WFA-MC, respectively).
In particular, in section VII, we determined the normal
form coefficients for these problems on the assumption
that each object is held fixed, and used these results in
section VIII to construct consistent stability diagrams for
these flows, comparing the predicted bifurcation scenar-
ios for mixed-convection flow past a fixed axisymmetric
object, a disk, and a sphere, with the results of direct nu-
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merical simulations of these flows. These results enabled
us to rationalize the results of previous numerical studies
including those in the complicated Knit-Knot region of
Auguste et al. [37] for the WFA problem for a disk with
thickness χ = 3 and the WFA-MC problem for a sphere
of Kotouč et al. [31], states XIII or XIX, thereby demon-
strating the utility of our bifurcation-theoretic approach.
Unfortunately, neither of these cases predicts the pres-
ence of structurally stable heteroclinic cycles, although
such states may arise for other parameter values.
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Appendix A: Normal form reduction

1. Third order forcing terms

The third order forcing terms are obtained from the
substitution of the Ansatz 63 into F(q,η). The general
expression of the third order forcing term F(ε3) is as fol-
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FIG. 28: Bifurcation diagram in the Knit-Knot region
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bifurcation.

lows:

F(ε3) ≡
2∑

j=−2
k,ℓ=−2

ajakaℓ
[
N(q̂j , q̂k,ℓ) +N(q̂k,ℓ, q̂j)

]
e−imnθe−iωnt

+

2∑
j=−2,ℓ=0

ajηℓ
[
N(q̂j ,Q

(ηℓ))
0 +N(Q

(ηℓ)
0 , q̂j)

]
e−imjθe−iωjt

+

2∑
j=−2,ℓ=0

ajηℓG(q̂j , eℓ)e
−imjθe−iωjt ,

(A1)

with a slight abuse of notation such that q̂j = q̂−j ,

q̂k,j = q̂−k,−j and aj = a−j . Therefore, the azimuthal
wavenumber and the frequency associated with a neg-
ative index are both considered to be of the opposite
sign, i.e., ω−j = −ωj and m−j = −mj . Finally, ωn

and mn are defined by the relations ωn = ωj + ωk + ωℓ,
mn = mj +mk +mℓ, where n = j + k + ℓ.
Resonant terms are those for which (ωn,mn) is equal to

either (0,m0), (ω1,m1) or (ω1,−m1) (plus the complex
conjugate pairs). The remaining terms only play a role
in higher-order truncations.
Hierarchically, the first class of third-order forcing

terms are those which are linear with respect to the am-
plitude aj for j = 0, 1, 2,

F̂
(aj)

(ε3) ≡
2∑

ℓ=0

ηℓ

([
N(q̂j ,Q

(ηℓ))
0 +N(Q

(ηℓ)
0 , q̂j)

]
+G(q̂j , eℓ)

)
.

(A2)
The second type of resonant forcing terms are those

used to compute the real coefficients lj for j = 0, 1, 2, 3.
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They are proportional to the cubic terms in the first equa-
tion of the complex normal form eq. (8), and are given

by

F̂
(a0|a0|2)
(ε3) ≡

[
N(q̂0, q̂0,−0) +N(q̂0,−0, q̂0)

]
+
[
N(q̂−0, q̂0,0) +N(q̂0,0, q̂−0)

]
,

(A3)

with the notation q̂−0 = q̂0.

Similarly, the terms F̂
(a0|aj |2)
(ε3) for j = 1, 2 are as follows:

F̂
(a0|aj |2)
(ε3) ≡

[
N(q̂0, q̂j,−j) +N(q̂j,−j , q̂0)

]
+
[
N(q̂−j , q̂0,j) +N(q̂0,j , q̂−j)

]
+
[
N(q̂j , q̂0,−j) +N(q̂0,−j , q̂j)

]
.

(A4)

Finally, F̂
(a0a1a2)
(ε3) is expressed as

F̂
(a0a1a2)
(ϵ3) ≡

[
N(q̂−0, q̂1,−2) +N(q̂1,−2, q̂−0)

]
+
[
N(q̂1, q̂−0,−2) +N(q̂−0,−2, q̂1)

]
+
[
N(q̂−2, q̂−0,1) +N(q̂−0,1, q̂−2)

]
.
(A5)

The third class of forcing terms are those used for the
computation of the complex coefficients A,B,C and D.

These are F̂
(aj |aj |2)
(ε3) for j = 1, 2:

F̂
(aj |aj |2)
(ε3) ≡

[
N(q̂j , q̂j,−j) +N(q̂j,−j , q̂j)

]
+
[
N(q̂−j , q̂j,j) +N(q̂j,j , q̂−j)

]
,

(A6)

F̂
(aj |ak|2)
(ϵ3) for j = 1, 2 and k = 0, 1, 2 with j ̸= k,

F̂
(aj |ak|2)
(ε3) ≡

[
N(q̂j , q̂k,−k) +N(q̂k,−k, q̂j)

]
+
[
N(q̂−k, q̂j,k) +N(q̂j,k, q̂−k)

]
+
[
N(q̂k, q̂j,−k) +N(q̂j,−k, q̂k)

]
.

(A7)

Finally, the term F̂
(a0a

2)
(ϵ3) is expressed as

F̂
(a0a

2)
(ε3) ≡

[
N(q̂0, q̂0,2) +N(q̂0,2, q̂0)

]
+
[
N(q̂2, q̂0,0) +N(q̂0,0, q̂2)

]
.

(A8)
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bulence in the wake of a fixed sphere in mixed convection,
Journal of Fluid Mechanics 625, 205 (2009).

[32] H. Gan, J. Chang, J. J. Feng, and H. H. Hu, Direct nu-
merical simulation of the sedimentation of solid parti-
cles with thermal convection, Journal of Fluid Mechanics
481, 385 (2003).

[33] P. Mcleod, D. S. Riley, and R. S. J. Sparks, Melting of a
sphere in hot fluid, Journal of Fluid Mechanics 327, 393
(1996).

[34] S. S. Sadhal, P. S. Ayyaswamy, and J. N. Chung, Trans-
port phenomena with drops and bubbles (Springer Science
& Business Media, 2012).

[35] C. H. Chiang and W. A. Sirignano, Interacting, convect-
ing, vaporizing fuel droplets with variable properties, In-
ternational Journal of Heat and Mass Transfer 36, 875
(1993).

[36] D. Fabre, F. Auguste, and J. Magnaudet, Bifurcations
and symmetry breaking in the wake of axisymmetric bod-
ies, Physics of Fluids 20, 051702 (2008).

[37] F. Auguste, D. Fabre, and J. Magnaudet, Bifurcations in
the wake of a thick circular disk, Theoretical and Com-
putational Fluid Dynamics 24, 305 (2010).

[38] P. Meliga, J.-M. Chomaz, and D. Sipp, Global mode in-
teraction and pattern selection in the wake of a disk: a
weakly nonlinear expansion, Journal of Fluid Mechanics
633, 159 (2009).

[39] M. Chrust, G. Bouchet, and J. Dušek, Parametric study
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