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Dynamics of a gas bubble in a straining flow: Deformation, oscillations,
self-propulsion
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We revisit from a dynamical point of view the classical problem of the deformation of a
gas bubble suspended in an axisymmetric uniaxial straining flow. Thanks to a recently
developed Linearized Arbitrary Lagrangian-Eulerian approach, we compute the steady
equilibrium states and associated bubble shapes. Considering perturbations that respect the
symmetries of the imposed carrying flow, we show that the bifurcation diagram is made of
a stable and an unstable branch of steady states separated by a saddle-node bifurcation,
the location of which is tracked throughout the parameter space. We characterize the
most relevant global mode along each branch, namely, an oscillatory mode that becomes
neutrally stable in the inviscid limit along the stable branch, and an unstable nonoscillating
mode eventually leading to the breakup of the bubble along the unstable branch. Next,
considering perturbations that break the symmetries of the carrying flow, we identify two
additional unstable nonoscillating modes associated with the possible drift of the bubble
centroid away from the stagnation point of the undisturbed flow. One of them corresponds
merely to a translation of the bubble along the elongational direction of the flow. The
other is counterintuitive, as it corresponds to a drift of the bubble in the symmetry plane
of the undisturbed flow, where this flow is compressional. We confirm the existence and
characteristics of this mode by computing analytically the corresponding leading-order
disturbance in the inviscid limit, and show that the observed dynamics are made possible
by a specific self-propulsion mechanism that we explain qualitatively.
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I. INTRODUCTION

The dynamics of a gas bubble (more generally a drop) freely suspended in a viscous fluid
undergoing a uniaxial straining flow has received considerable attention since the pioneering
work of Taylor [1]. When the fluid inertia cannot be neglected, the bubble shape results from
the competition of pressure and viscous stresses that act to increase the interface deformation and
the capillary stress that resists it. Under certain conditions, capillary effects are insufficient to keep
the deformation finite, leading eventually to the breakup of the bubble. This physical configuration
is commonly described in terms of the Weber (We) and Reynolds (Re) numbers which characterize
the relative importance of inertial forces with respect to capillary and viscous forces, respectively.
At low-but-finite Reynolds number, Acrivos and Lo [2] showed that no steady bubble shape exists
beyond a critical Weber number, Wec, increasing as Re3/4. The same qualitative conclusion was
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FIG. 1. Sketch of the physical configuration with the symmetry axis r = 0 and the symmetry plane z = 0
of the undisturbed straining flow, and the corresponding (r, θ, z) coordinate system.

reached in the inviscid limit by Miksis [3] who determined the corresponding O(1) value of Wec.
Subsequently, Ryskin and Leal [4] computed the steady bubble shape over a wide range of We and
Re by solving the full stationary Navier-Stokes equations on a boundary-fitted grid. They found that
Wec increases monotonically with Re and recovered with a good accuracy the predictions of [2] and
[3] in the respective limits. These findings were confirmed by Kang and Leal [5] who considered
the time-dependent bubble evolution, starting from some arbitrary initial shape. Among other things,
they showed that the critical Weber number is highly sensitive to this initial condition, observing that
it decreases as the initial elongation of the bubble is increased beyond that of the steady solution.
They also considered the case of oscillating bubbles in the inviscid limit and showed that their
oscillation frequency decreases as We increases and vanishes for We = Wec.

In this study, we revisit this rich phenomenology with the help of a global linear stability
approach. Obviously, the chief technical difficulty in this free-boundary problem stands in the fact
that the geometry of the flow domain is a priori unknown.This is why up to now it has been tackled
numerically either with boundary integral methods in the creeping-flow limit (Re = 0) [6,7] or in the
potential flow limit [8,9], or with Navier-Stokes solvers making use of time-evolving boundary-fitted
grids [4,5]. Here we overcome this difficulty by making use of the recently developed Linearized
Arbitrary Lagrangian-Eulerian approach [10], which allows the governing equations and boundary
conditions of the problem to be expanded rigorously on an appropriate reference domain. We specify
the problem in Sec. II and provide an overview of the Linearized Arbitrary Lagrangian-Eulerian
methodology in the Appendix. In Sec. III we take advantage of this approach to determine the
complete bifurcation diagram of the system by considering perturbations respecting the symmetries
of the imposed straining flow. This diagram is found to comprise a stable and an unstable branch
connected through a saddle-node bifurcation. The stable branch corresponds to the previously
computed steady states. The unstable branch, which was only reported before under creeping-flow
conditions [7], is shown to be associated with the breakup of the bubble under subcritical conditions.
In Sec. IV we characterize the dominant linearly unstable or marginally stable mode of the system
along each branch. By letting the bubble centroid move freely, we also identify two unstable modes
that break the symmetries of the imposed straining flow and, to the best of our knowledge, have not
been described up to now. We observe that in one of them the bubble drifts away from the symmetry
axis of the straining flow. We show that this surprising dynamics are associated with an original
self-propulsion mechanism.

II. STATEMENT OF THE PROBLEM

We consider a gas bubble with negligible viscosity and constant volume Vb immersed in a
Newtonian fluid, with dynamic viscosity μ and density ρ. The surface tension γ acting at the
interface is assumed constant and the flow is considered incompressible. The fluid is subject to
a uniaxial straining flow which, in the (er, eθ , ez ) basis sketched in Fig. 1, induces the velocity
field U∞ = − S

2 rer + Szez, where S denotes the uniform strain rate. The bubble centroid stands
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initially at the origin r = z = 0 which is also the hyperbolic point of the straining flow. The
stationary configuration (but not necessarily the eigenmodes to be considered later) is assumed
to stay axisymmetric about the z axis (r = 0) and to exhibit a mirror symmetry with respect to the
midplane z = 0 (see Fig. 1). Defining the equilibrium diameter d of the bubble such that Vb = π

6 d3,
we characterize the bubble deformation in the parameter space (Oh, We). The Ohnesorge number,
Oh = μ√

ργ d
, is defined as the ratio of the viscous force μUcd based on the capillary velocity scale

Uc = [γ /(ρd )]1/2 and the capillary force γ d . Similarly, the Weber number, We = ρS2d3

4γ
, is defined

as the ratio of the inertial force ρU 2
o d2 based on the outer velocity scale Uo = Sd/2 and the capillary

force. A Reynolds number may also be built by combining these two parameters in the form
Re =

√
We

Oh = ρUod
μ

. The bubble elongation may be characterized through the aspect ratio χ = dz

dr
,

with dz and dr the major and minor axis lengths, respectively.
Let �(t ) and �b(t ) denote the time-dependent fluid domain and bubble-fluid interface, respec-

tively. The problem is governed by the set of equations

∂t�u + u · ∇�u = ρ−1∇� · �� in �(t ), (1)

∇� · u = 0 in �(t ), (2)

∂t�η = u · n on �b(t ), (3)

�� · n = (−pb + γ κ )n on �b(t ), (4)

supplemented with appropriate boundary conditions at r = 0, z = 0 and in the far field. In (1)–(4),
the subscript � is used to stress the fact that the time and space derivatives are to be evaluated in
the time-dependent domain �(t ). The no-penetration condition (3) implies that, at any location x
on the interface, the time derivative of the interface position η(x, t ) must coincide with the normal
component u · n of the local fluid velocity u(x, t ), n(x, t ) denoting the local unit normal directed
into the fluid. The stress tensor in the fluid is ��(u, p) = −pI + 2μD�(u), with p, I, and D�(u)
the pressure, unit tensor, and strain-rate tensor, respectively. The normal projection of (4) expresses
the fact that the normal stress n · �� · n balances the difference between the uniform pressure pb(t )
inside the bubble and the local capillary pressure γ κn, with κ (x, t ) = ∇� · n(x, t ) the local mean
curvature of the interface. Last, the tangential projection of (4) yields the shear-free condition n ×
(�� · n) = 0 which holds if the interface is free of any contamination.

Determining the steady solutions of (1)–(4) and performing subsequently a rigorous global linear
stability analysis of the system is made difficult by the deformable nature of the fluid domain.
Developing robust and efficient computational strategies to achieve this goal is currently an active
research area in the field of fluid-structure interactions; see, e.g., [11,12] and references therein. Here
we adopt a Linearized Arbitrary Lagrangian-Eulerian approach, hereinafter referred to as L-ALE,
which is a hybrid formulation combining the Eulerian and Lagrangian descriptions of the fluid
motion. This approach, initially developed by one of us [10], is well adapted to the treatment of
problems involving deformable fluid interfaces subjected to capillary forces. An overview of the
L-ALE methodology and of its numerical implementation is given in the Appendix.

An important strength of this approach is that steady-state solutions are computed using the
steady form of the governing equations, i.e., the time derivatives in (1) and (3) are dropped. Making
use of a Newton algorithm combined with a suitable continuation method (see the Appendix), this
allows the determination of both stable and unstable steady states, which would not be possible
with a time-marching approach. Once a steady state is reached, its linear stability is assessed by
examining the evolution of disturbances with a prescribed eigenmode form. In the present problem,
the base configuration exhibits an axial symmetry about the z axis. It is thus relevant to consider
disturbances of velocity, pressure, and position in the form �(r, z)eimθ−iωt , with θ the polar angle in
the cylindrical coordinate system sketched in Fig. 1 and m the corresponding wave number. Unstable
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FIG. 2. Bifurcation diagram. (a) Variation of the bubble elongation with the Weber number for a fixed
value of the Ohnesorge number, here Oh = 10−2; (b) variation of the critical Weber number with the Reynolds
number. Bullets: present results obtained with the L-ALE approach [the red bullet in (a) pinpoints the critical
Weber number where the saddle-node bifurcation takes place]; solid black line in(a)–(b): empirical correlation
proposed in [4]; dashed line in (a): unstable branch determined with the continuation method. In (b) the blue
line is the maximum Weber number We = We∗

c (Re) beyond which Mode 0-S (o) stops oscillating; the red
line indicates the minimum Reynolds number beyond which Mode 1-S (s) (see Sec. IV B) is unstable. In both
panels, bubble shapes are shown for selected values of the parameters corresponding to the green bullets; the
black and red contours correspond to the steady state and the unstable Mode 0-S (s), respectively.

eigenmodes satisfying Im(ω) > 0 can be classified as stationary (s) if Re(ω) = 0 or oscillating (o)
if Re(ω) �= 0. They can also be classified as symmetric (S) or antisymmetric (A) with respect to the
plane z = 0. In what follows, we classify the modes using a nomenclature that summarizes their
three characteristic properties, starting with their polar wave number m. For instance a “0-S (s)”
mode is axisymmetric (m = 0), symmetric with respect to the plane z = 0, and stationary.

III. BIFURCATION DIAGRAM

Figure 2(a) displays the bifurcation diagram obtained by setting the Ohnesorge number to the
constant value Oh = 10−2. This diagram reveals the existence of two branches below a critical
Weber number Wec ≈ 2.27 beyond which no stationary solution exists. Previous studies, for
instance [5], showed that the bubble extends indefinitely when We > Wec and eventually breaks
up. We tracked the two branches found for We � Wec using the pseudo-arc-length continuation
method described in the Appendix. Bubbles standing along the lower branch exhibit a convex shape
while those along the upper branch are characterized by the presence of a concave neck in the
symmetry plane. For a given We < Wec, solutions found along the lower branch (corresponding
to the bubble with the smaller aspect ratio) are linearly stable in the sense that, following the
nomenclature introduced above, all eigenmodes belonging to the 0-S subspace are damped. In
contrast, the solutions found along the upper branch are unstable due to the existence of an amplified
eigenmode of the 0-S (s) type. In the creeping-flow limit, Gallino et al. [7] identified this branch as
an edge state of the underlying dynamical system, a qualification that still holds in the presence of
finite-Reynolds-number effects. More precisely, if the initial conditions are located in the basin of
attraction of this branch, the system first converges toward the corresponding steady state, before the
solution becomes unstable at some point and the bubble eventually breaks up. The route to breakup
then takes the form of a specific unstable deformation mode, hereinafter referred to as Mode 0-S (s),
shown with thin red contours in Fig. 2(a). Compared with the corresponding equilibrium shape, this
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FIG. 3. (a) Variation of the frequency (black lines), growth rate of Mode 0-S (o) (green lines) and of Mode
0-S (s) (red lines) with respect to We, for three values of the Ohnesorge number. The black bullet and red
square help to identify the critical Weber numbers We∗

c and Wec, respectively. (b) Pressure disturbance and
bubble shape for Mode 0-S (o) (lower branch of the bifurcation diagram), for We = 2.5 and Oh = 1 × 10−4.
The black contour and gray lines represent the bubble shape and the streamlines in the base state, respectively.
The colors show the imaginary part of the pressure disturbance at time t = T/4 and the contours display
the bubble shape at t = T/4 (cyan), t = T/2 (orange), t = 3T/4 (dark blue), and t = T (magenta), with T
the period of oscillation. (c) Same for Mode 0-S (s) (upper branch of the bifurcation diagram), for the same
(We, Oh) pair.

mode is characterized by an increase in the bubble elongation and a reduction in the diameter of the
neck. The parametric dependence of the critical Weber number with respect to the Reynolds number
is reported in Fig. 2(b). Present results are found to agree well with those of [4] (solid black line).
In particular, the Re3/4 dependence predicted in [2] (after it was reinterpreted in [4]) in the low-Re
limit, and the asymptotic value We∞

c ≈ 2.77 determined in [3] in the inviscid limit are recovered.
It may be observed that the stationary bubble shape corresponding to critical conditions is convex
for intermediate and large Ohnesorge numbers, Oh � O(10−2), say, but becomes slightly concave
in the neighborhood of the symmetry plane at lower Oh.
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IV. LINEAR STABILITY

A. Symmetry-preserving unstable or least stable modes

In experiments, the bubble centroid is usually constrained to stay fixed at the stagnation point
of the undisturbed flow using computer-controlled devices [13,14]. Under such circumstances,
the oscillations (for stable cases) or the deformations leading to breakup (for unstable cases) are
expected to respect the polar and mirror symmetries of the base flow. This is why we first consider
eigenmodes belonging to the subspace 0-S following the nomenclature introduced above. Two such
modes emerge as the most unstable or least stable ones. One is the already mentioned unstable Mode
0-S (s), found along the upper branch of the bifurcation diagram. This mode is stationary, i.e., it is
associated with a frequency such that Re(ω) = 0, and emerges from the saddle-node bifurcation
at the critical Weber number Wec. In contrast, the second mode, hereinafter referred to as Mode
0-S (o), is oscillating and stable. Figure 3(a) shows how the frequency of this mode (black line)
decreases as We increases and becomes eventually zero at a critical Weber number We = We∗

c .
At this specific value, the complex eigenvalue associated with Mode 0-S (o) splits into two real
eigenvalues. Both are negative, i.e., the corresponding two modes are damped, but they behave in
opposite ways as We − We∗

c increases within the interval [We∗
c , Wec]. The damping rate of the mode

associated with the smallest eigenvalue (in absolute value) decreases continuously and vanishes
eventually at We = Wec, leading to the amplification of Mode 0-S (s) beyond the saddle-node point
[red line in Fig. 3(a)]. In contrast, the damping rate of the original Mode 0-S (o) [green line in
Fig. 3(a)] increases continuously from We∗

c to Wec, making this mode aperiodic throughout this
interval. The spatial structure of modes 0-S (o) and 0-S (s) at a slightly subcritical Weber number
(We = 2.5) is illustrated in Figs. 3(b) and 3(c). Mode 0-S (o) is associated with the complex eigen-
value ω = 1.3284 − 0.0044i and therefore oscillates with a period T = 2π/1.3284 ≈ 4.73. These
oscillations result from the competition of inertial and capillary effects. They are characterized
by a periodic sequence of compressional (t = T/4) and extensional (t = 3T/4) displacements of
the bubble surface in the z direction. Conversely, Mode 0-S (s) is unstable (ω = +0.2797i) and
is characterized by a growing elongation of the bubble along its symmetry axis and a continuous
shrinking within its equatorial plane.

Variations of the growth rate of Mode 0-S (s) with respect to Wec − We are displayed in Fig. 4(a).
The growth rate exhibits a marked increase with the distance to the threshold, scaling as (Wec −
We)α with α = 1/4 and α = 1/2 in the high- and low-Reynolds-number limits, respectively. The
(Wec − We)1/4-scaling is seen to hold up to Oh ≈ 10−3, while the (Wec − We)1/2-scaling applies
for Oh � 10−1. Variations of the oscillation frequency (ωr) of Mode 0-S (o) with respect to
We∗

c − We are displayed in Fig. 5. The frequency is also found to grow as (We∗
c − We)α with

α = 1/4 and α = 1/2 in the high- and low-Reynolds-number limits, respectively. The similarity
of the above two scalings, albeit with the role of Wec played by We∗

c in the case of Mode 0-S (o),
suggests a close connection between the dynamics of the two modes. As the respective positions of
the black bullet and red square in Fig. 3(a) makes clear [see also the blue line in the range Re < 10
in Fig. 2(b)], We∗

c is slightly lower than Wec when viscous effects are large, and coincides with Wec

when Oh → 0. These findings are in line with those reported in [5]. That Mode 0-S (o) exhibits
aperiodically damped oscillations within a finite interval [We∗

c (Oh), Wec(Oh)] in the presence of
significant viscous effects was also pointed out in [15]. Indeed, assuming the steady bubble shape
to be spherical and accounting for viscous effects in the dynamic boundary condition only through
the influence of normal stresses (i.e., ignoring the shear-free condition), it was found in [15] that
this aperiodically damped regime emerges for Oh � 0.12. Based on an expansion around We = 0, it
was predicted that ωr scales as (Wec0 − We)1/2, with Wec0 ≈ 3.23. According to the inset in Fig. 5,
this prediction holds for We∗

c − We � 0.3 but fails to predict the rapid variations of the frequency
near the critical Weber number.

The decay rate of Mode 0-S (o) is plotted in Fig. 4(b). This plot confirms the conclusion of
Fig. 3(a), showing that this mode is stable throughout its domain of existence. Its decay rate
increases linearly with Oh and is virtually independent of We. This mode becomes neutrally stable
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FIG. 4. Variations of the growth rate of modes 0-S (o) and 0-S (s). (a) With respect to Wec − We for Mode
0-S (s) on the unstable branch; (b) with respect to Oh for Mode 0-S (o) on the stable branch. In (a) the green
bullets, red squares, blue triangles, and gray triangles refer to Oh = 10−4, 10−3, 10−2, and 10−1, respectively;
in (b) the green circles, red squares, and blue triangles refer to We = 0.1, 0.2, and 0.4, respectively. The dashed
lines indicate the asymptotic scalings.

FIG. 5. Variation of the oscillation radian frequency ωr of Mode 0-S (o) with respect to We. The
black dashed lines correspond to the asymptotic scalings suggested by present results. The red line
shows the low-We expansion of [15]. The green bullets, red squares, blue triangles, and gray trian-
gles refer to Oh = 10−4, 10−3, 10−2, and 10−1, respectively. The inset provides a zoom on the range
0.5 � We∗

c − We � 3.
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in the inviscid limit Oh → 0, and We∗
c then coincides with Wec as the right panel in Fig. 3(a)

shows. This is no surprise since the problem becomes time-reversible in this limit and the bifurcation
becomes a conservative saddle-node one, with two purely complex eigenvalues changing into two
purely real ones. That Mode 0-S (o) is stable for finite Reynolds numbers indicates that inertial
and capillary effects stay in balance in the corresponding dynamics, with viscous effects providing
an additional stabilizing ingredient. This scenario works as long as the elongation of the bubble
is small enough for the latter to remain in the basin of attraction of the stable steady state, i.e.,
close to the lower branch of the bifurcation diagram in Fig. 2(a). Conversely, if the bubble aspect
ratio is large enough, breakup occurs through a Mode 0-S (s) deformation after the system has first
approached the unstable (upper) branch of the bifurcation diagram and then moved away from it.
In this case, the capillary force in the neck region close to the z = 0 symmetry plane is weaker
than with a Mode 0-S (o) deformation having the same magnitude, owing to the larger concavity
of the bubble surface [compare the blue contours in Figs. 3(b) and 3(c)]. This makes the capillary
force insufficient to balance the compressional force exerted by the base flow in that region. Beyond
the linear stage considered here, this situation leads unavoidably to breakup through the classical
end-pinching scenario [16,17].

One can wonder how relevant the dynamics associated with the unstable branch of the bifurcation
diagram are from an experimental point of view. In other words, how can this branch be reached in
practice, and how Mode 0-S (s) can be triggered. Elements of answer stand in [16] which considered
the transient response of a previously elongated drop once the extensional flow is stopped. It was
observed that, provided the drop has reached a sufficient elongation prior to the stop, such that it has
already taken a waisted shape, it eventually breaks up via an end-pinching instability [17] instead
of relaxing towards its initial shape. These observations suggest that the unstable branch may be
reached by first elongating the bubble for some time under suitable supercritical conditions, i.e., by
imposing a Weber number We1 > Wec, until the bubble attains the desired waisted shape. Then,
after having identified the subcritical Weber number We2 < Wec at which the bubble achieves the
same or a very similar stationary shape on the unstable branch, the imposed strain may be suitably
reduced to decrease the Weber number We(t ) down to the value We2. Provided this transient is
calibrated in such a way that the disturbance it generates remains small (which may represent a
serious experimental challenge), the subsequent dynamics would correspond for some time to those
of the linearly unstable Mode 0-S (s) described here.

B. Symmetry-breaking unstable modes

In cases where the bubble centroid is left free, one has to consider eigenmodes breaking either
the axial symmetry about the r = 0 axis or the mirror symmetry about the z = 0 plane. Two
new unstable modes are then detected. To the best of our knowledge, these modes have not been
characterized so far. One of them, denoted as Mode 0-A (s), is unstable for every (We, Re). This
mode is stationary but antisymmetric with respect to the plane z = 0. As Fig. 6 (b) shows, this mode
corresponds to a drift of the bubble centroid along the direction of elongation of the undisturbed
flow. The existence of this unstable mode is the reason why in experiments a dynamic control
such as that described in [14] has to be applied in order to prevent the bubble (or drop) from
escaping along the extensional direction of the flow. The second mode, which we refer to as Mode
1-S (s), is also stationary. It is symmetric with respect to the plane z = 0 and associated with the
wave number m = 1 in the polar direction eθ . As the red line in Fig. 2(b) indicates, this mode
is unstable when the Reynolds number exceeds a value of the order of 20 which only weakly
depends on the Weber number. Beyond this threshold, the bubble is found to drift radially in the
z = 0 plane; the direction of this drift is arbitrary since it is dictated by the definition of the angle
θ . What is remarkable is that this drift is performed against the compressional component of the
undisturbed flow. Since no external force is applied to the system, this unexpected motion may
be thought of as an example of self-propulsion. The possibility for a deformable body immersed
in a potential flow to self-propel was examined in several studies, especially [18–20]. It was
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FIG. 6. Modes 0-A (s) and 1-S (s) in a high-Reynolds-number case. (a) Variation of the growth rate of
the two modes with respect to We, computed through the truncated potential flow solution of (7) and (8)
(lines), and the L-ALE approach in a slightly viscous flow with Re = 103 (bullets); black/gray: Mode 0-A
(s), red/pink: Mode 1-S (s). (b) Pressure disturbance (colours) and bubble shape (contours) for Mode 0-A
(s) with We = 10−1 and Re = 103, corresponding to the black bullet in (a). The almost superimposed blue
and dashed white contours refer to the results provided by the L-ALE approach and the truncated potential
flow solution, respectively. (c) Same with Mode 1-S (s), corresponding to the red bullet in (a). In (b)–(c) the
black contour represents the bubble shape in the base state and the gray lines show the corresponding
streamlines.

concluded that a deformable body experiencing a net rate of deformation may self-propel provided
its time-dependent shape presents some asymmetry. However, these references mostly considered
oscillatory deformations of bodies moving in a fluid at rest. In contrast, the mode involved in
the present case is stationary in the sense defined in Sec. II and the bubble moves in a straining
flow. These two features make the present situation quite different from those envisaged in the
aforementioned references.

The above predictions, especially those concerning Mode 1-S (s), need confirmation. For this
purpose, following the approach of [15,21], we considered the low-Oh (hence high-Re) regime and
determined analytically to first order in We the evolution of a linear perturbation of the bubble shape,
assuming that the disturbed flow is strictly irrotational. That is, assuming u = ∇φ, we sought the
harmonic function φ satisfying

∂tη = ∇φ · n, ∂tφ + 1
2 (∇φ · ∇φ) + ρ−1 pb = ρ−1γ∇ · n on �b. (5)
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For this, assuming that the Weber number is low enough for the undisturbed bubble to be close to a
sphere, we expanded the velocity potential and the bubble shape in the form

φ = Sd2

4

(
φs + εφm

u

)
, η = d

2

(
ηs + εηm

u

)
,

φs = P0
2 (ζ )

(
1

2
r2

s + 1

3
r−3

s

)
, ηs = 1,

(6)

φm
u =

∞∑
n=0

χm
n (t )r−(n+1)

s Y m
n (�,ϕ), ηm

u =
∞∑

n=1

δm
n (t )Y m

n (�,ϕ),

with Y m
n (�,ϕ) = Pm

n (ζ )e−imϕ the spherical harmonics, Pm
n the associated Legendre polynomial, and

ζ = cos �. The corresponding spherical coordinate system is such that � = 0 (π ) on the positive
(negative) half of the z axis defined in Fig. 1, the meridional angle ϕ is equivalent to the angle
θ defined in the same figure, and rs is the radial position (normalized by d/2) measured from the
centroid of the undisturbed bubble. Injecting the ansatz (6) in (5), assuming ε � 1 and keeping only
terms of O(ε) yields the eigenvalue problem

χ̇m
n = (n − 1)(n + 2)δm

n

+ 5

2

(
1

2
We

) 1
2 { (n − 1 − m)(n − m)(n − 2)

(2n − 3)(2n − 1)
χm

n−2 − n(n + 1) − 3m2

(2n − 1)(2n + 3)
χm

n

− (n + 3)(n + 1 + m)(n + 2 + m)

(2n + 3)(2n + 5)
χm

n+2

}
, (7)

δ̇m
n = −(n + 1)χm

n

+ 5

2

(
1

2
We

) 1
2 { (n − 1 − m)(n − m)(n + 1)

(2n − 3)(2n − 1)
δm

n−2 + n(n + 1) − 3m2

(2n − 1)(2n + 3)
δm

n

− n(n + 1 + m)(n + 2 + m)

(2n + 3)(2n + 5)
δm

n+2

}
, (8)

with the dot denoting the time derivative. Solving the problem (7)–(8) for m = 0 and m = 1 up
to n = Nmax (with Nmax large enough that the eigenvalues no longer vary by further increasing
the number of harmonics) reveals that modes 0-A (s) and 1-S (s) are also the most unstable ones in
the potential flow limit. Their growth results from imbalances among the terms of the right-hand side
of (7)–(8), which involve the velocity ∇φs of the undisturbed straining flow. In (7) the imbalance
is between the variations of the dynamic pressure, −∇φs · ∇φu, and those of the capillary pressure,
−∇ · (∇ηu). In (8) it is between the variations of the normal velocity at the interface induced by the
velocity disturbance, ers · ∇φu (with ers the unit radial vector), and those induced by the disturbance
of the interface position, −∇φs · ∇ηu. Figure 6(a) shows how the growth rate of the two modes
varies with We according to the above truncated potential model and to the L-ALE approach. Both
solutions indicate that the growth rate increases as We1/2, as may be anticipated from the form of the
right-hand sides in (7)–(8). The growth rate of Mode 1-S (s) is slightly smaller than that of Mode 0-A
(s). Hence, to observe the former in a laboratory experiment, it is necessary to prevent the bubble
from moving along the z axis. As the location of the bullets in the figure shows, the growth rates
estimated with the L-ALE approach are lower than those resulting from the truncated potential flow
model, especially in the case of Mode 1-S (s). This is due to the fact that finite-We effects affecting
the steady state solution are not taken into account in the low-We potential flow expansion, nor
are viscous effects arising in the boundary layer that surrounds the bubble. Although these effects
are expected to be weak for Re = 103, they are likely to be stabilizing, hence to reduce the growth
rate. Despite these limitations, the truncated potential flow solution is found to provide a reliable
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estimate of the bubble deformation for modes 0-A (s) and 1-S (s) [dashed contour in Figs. 6(b)
and 6(c)]. At leading order, this deformation takes the form η0

u(�, t ) ∝ cos � for Mode 0-A (s) and
η1

u(�,φ, t ) ∝ sin � cos ϕ for Mode 1-S (s). In summary, the above perturbative approach confirms
that the presence of the unstable Mode 1-S (s) and its unexpected dynamics are not artifacts of the
L-ALE approach. This mode is part of the intrinsic dynamical response of the system when the
bubble centroid is not constrained to stay at the stagnation point of the uniaxial flow.

The bubble shapes and the pressure disturbance distribution displayed in Fig. 6(c) help to
understand the physical mechanism that makes the self-propulsion associated with Mode 1-S (s)
possible. Consider that the bubble is initially spherical and stands at the stagnation point. If a
disturbance in the form of Mode 1-S (s) is applied, the geometric centroid of the bubble shifts
to a radial position r0 �= 0. At this position, due to the radial pressure gradient −ρ S2

4 r0 induced by
the carrying flow, the disturbance past the bubble is no longer symmetric, even though the latter
is still considered spherical. This pressure gradient is responsible for the left/right asymmetry in
the pressure distribution of Fig. 6(c). That the pressure disturbance at the bubble surface reaches
its extrema approximately midway between the z axis and the symmetry plane z = 0 is a classical
feature of a nearly inviscid flow past a sphere translating in a straining flow (see, e.g., [22]). These
pressure extrema having opposite signs, they result in a net thrust (corresponding to an added-mass
force) propelling the bubble in the direction opposite to the pressure gradient, i.e., from left to right
in the figure. Moreover, the pressure on the outer side of the interface being equal to that within
the bubble minus the capillary pressure, the asymmetric pressure distribution tends to make the
bubble shape more asymmetric by decreasing (increasing) the mean curvature of the interface on
the high- (low-) pressure side. Again, these deformations change the position of the bubble centroid,
and they do it cooperatively with the above added-mass effect, as both mechanisms act to move the
bubble to a position r > r0 [i.e., to push it to the right in Fig. 6(c)]. Since the inward velocity of
the straining flow increases with r, so does the relative velocity between the carrying flow and
the bubble centroid. This in turn enhances the pressure asymmetry at the bubble surface, which
reinforces both the added-mass thrust and the asymmetric changes in the interface curvature, and
so on. This qualitative scenario confirms that applying an asymmetric perturbation corresponding
to the mode m = 1 to an initially spherical bubble resting at the stagnation point allows it to move
radially thanks to what may be considered as a self-propulsion mechanism assisted by the straining
flow. This mechanism grounds on the cooperative effect of capillary and inertial stresses, the latter
resulting from the interaction of the carrying flow with the velocity disturbance. Of course this
picture only holds as long as viscous effects are weak enough. Indeed, since the bubble leads the
fluid, the drag resulting from the corresponding relative velocity resists the bubble drift (whereas
the two cooperate in the case of Mode 0-(A) (s) in which the bubble lags the fluid). Therefore, it is
only under conditions where this drag is small enough for the inertial forces involved in the above
scenario to dominate that the bubble may drift. This is why Mode 1-S (s) only grows when the
Reynolds number is large enough, i.e., Re � 20 according to the red line in Fig. 2(b). This is also
why this intriguing behavior was not observed in the experiments of [13] in which the Reynolds
number was kept very low (in the range 10−2–10−4) by using very viscous oils as suspending fluid.

V. SUMMARY

In this study, we employed the recently developed L-ALE approach to revisit the dynamics of
a gas bubble immersed in a uniaxial straining flow. This approach proved to be able to accurately
determine the equilibrium shapes of the bubble, as well as the maximum Weber number Wec(Oh)
beyond which no equilibrium is possible. As already reported in the literature, the return to
equilibrium of a slightly disturbed bubble under subcritical conditions takes place through damped
oscillations, except within a small interval [We∗

c , Wec] where an aperiodic damped regime takes
place. We analyzed the eigenmode associated with these behaviors in detail. In particular, we
characterized the scaling laws governing the variations of the corresponding eigenvalue with Oh and
We∗

c − We. Thanks to a suitable continuation method, we also found a second branch of solutions
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linked to the branch of stable solutions through a saddle-node point. This branch was not identified
up to now, except in the creeping-flow limit. Indeed, equilibrium shapes corresponding to this
second branch are always unstable, which makes them unreachable with traditional time-marching
approaches. The linear stability analysis revealed that the most amplified eigenmode on that branch
is stationary and is characterized by the occurrence of a neck on the symmetry plane of the bubble.
In the nonlinear stage, this would eventually lead to the breakup of the bubble through the end-
pinching mechanism. We sketched how this unstable branch and the above stationary mode may be
approached in a laboratory experiment. We also examined the case where the bubble centroid is not
constrained to stay at the stagnation point of the undisturbed flow, a situation that was not considered
in previous studies. In this case, two other unstable modes arise. The most amplified one corresponds
to the drift of the bubble along the elongational axis of the undisturbed flow. Surprisingly, the
slightly less amplified second mode leads to a drift of the bubble within the symmetry plane of
the undisturbed flow, a region where this flow is directed toward the stagnation point. To check
this unexpected prediction, we considered the low-We inviscid limit in which a truncated potential
flow model can be established. We solved the corresponding eigenvalue problem and confirmed the
predictions of the L-ALE approach in that limit. We also presented a qualitative scenario explaining
why, after imposing an asymmetric initial perturbation to the bubble, the pressure and the interface
curvature distributions develop growing asymmetric components that cooperate to make the bubble
drift against the base flow possible when viscous effects are weak enough.

APPENDIX A: OVERVIEW OF THE L-ALE APPROACH

Free-boundary problems involving a Newtonian fluid contained in a time-dependent fluid domain
�(t ) bounded by a fixed boundary �s and a free boundary �b(t ) subjected to capillary effects are
governed by (1)–(4) supplemented with appropriate boundary conditions on �s. In the L-ALE
approach, we first consider a reference domain �0, which is fixed and allows unknowns to be
evaluated in an Eulerian manner, and the physical domain �(t ), which depends upon time and
where Lagrangian quantities are evaluated. Let x0 and x denote the local position (with respect to
some fixed origin) of a given geometrical point in �0 and �, respectively. Then the two domains are
connected through the diffeomorphism � : �0 
→ �, with �(x0, t ) = x. In the L-ALE approach,
this diffeomorphism is linearized in the form �(x0, t ) = x0 + ξ(x0), where ξ(x0) is a displacement
field such that ||ξ(x0)|| = ||x − x0|| ∼ O(ε0||x0||) with ε0 � 1. The field ξ(x0) propagates the
Lagrangian displacement of the interface η into the fluid domain. This displacement field is arbitrary
since it is not determined by the governing equations (1)–(4), i.e., it is not dictated by the actual
motion of the fluid elements, except at the free boundary. It only needs to obey the no-penetration
condition (3), plus some mild smoothness properties. Usually the smoothness of ξ is ensured by
assuming that its distribution within the fluid domain is governed by an elliptic equation, such as
the Laplace equation or the Cauchy equation for an elastic material. An illustration of the L-ALE
methodology is depicted in Fig. 7(a). The sketch shows how the free boundary, labeled �b in the
physical domain � and �b,0 in the reference domain �0, transforms from one domain to the other.
Although the geometric properties of this boundary, especially its unit normal n and tangent t, may
be evaluated in both domains, we always evaluate them in �0, after which they may be mapped
forward onto the physical domain via � if needed.

The L-ALE formalism leads to an approach in which the governing equations and the de-
formation of the physical domain are solved simultaneously and consistently, which ensures the
stability of the algorithms involved. Such an approach, in which the unknown to be determined
is the state vector q = [u, p, pb, ξ, η]T (the superscript T denoting the transpose), is sometimes
referred to as “monolithic.” To obtain the steady-state solution of (1)–(4), we solve the corre-
sponding steady nonlinear problem using a Newton method, following the methodology introduced
in [10].
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FIG. 7. Sketch of the geometrical transformations involved in the L-ALE approach. (a) General framework,
showing in particular the current physical domain � and free boundary �b (black), and the reference domain
�0 and free boundary �b,0 (blue); (b) successive updates of the reference domain during the iterations of the
Newton method.

That is, the steady-state solution, q0 = [u0, p0, pb,0, 0, 0]T, is determined iteratively by solving
the system of equations governing the increment q′ = [u′, p′, p′

b, ξ, η]T:

LNS[q′] ≡ u′ · ∇�0 u0 + u0 · ∇�0 u′ − ρ−1∇�0 · ��0 (u′, p′ ) + Q�0 (ξ) = −u0 · ∇�0 u0 + ρ−1∇�0 · ��0 in �0,

Ldiv[q′] ≡ ∇�0 · u′ − ∇�0 u0 : ∇T
�0

ξ = −∇�0 · u0 in �0,

Lkin[q′] ≡ u′ · n0 + u0 · n′ = −u0 · n0 on �b,0,

Ldyn[q′] ≡ (p′
b − p′ − γ κ ′ )n0 + 2μD�0 (u′ ) · n0 = (p0 − pb,0 + γ κ0)n0 on �b,0,

+(pb,0 − p0 − γ κ0)n′ + 2μD�0 (u0) · n′ −2μD�0 (u0 ) · n0

Lcom[q′] ≡ ξ − ηn0 = 0 on �b,0,

LE [ξ] ≡ ∇�0 · E(ξ) = 0 in �0,

(A1)
where n′ = −(t0 · ∇�b,0η)t0, κ ′ = ∇�0 · n′, and the �0 and �b,0 subscripts indicate that the corre-
sponding spatial derivative is evaluated in the reference domain �0 bounded (partly) by the free
boundary �b,0. In (A1) the first four equations correspond to the linearized form of the governing
equations (1)–(4). The deformation of the domain induces several extra terms in these linearized
equations, especially an extra momentum source term Q�0 (ξ) = −u0 · ∇�0 u0 · ∇�0ξ + ρ−1(∇�0 ·
��0 ) · ∇T

�0
ξ + ρ−1μ∇�0 · {∇�0 u0 · ∇�0ξ + (∇�0 u0 · ∇�0ξ)T} in the momentum equation. The last

two equations determine the displacement field ξ throughout the domain. The elliptic operator E
controls the spatial distribution of this arbitrary displacement within �0, subject to the compatibility
condition ξ = ηn0 on �b,0. Here, following [12], we assume that this distribution obeys a linear
elastic response, i.e., we set E(ξ) = 2μeD�0 (ξ) + λe(∇�0 · ξ)I. With this choice, the last equation in
(A1) may be interpreted as the Cauchy equation of elasticity, the coefficients λe and μe being Lamé
pseudocoefficients which we both set to unity.

At each iteration n, the pseudo-steady-state solution is updated in the form q(n)
0 = q(n−1)

0 + q′ =
[u0 + u′, p0 + p′, pb,0 + p′

b, ξ, η]T. The reference domain �0 is also updated, based on conditions
x

�
(n)
0

= x
�

(n−1)
0

+ ξ and x
�

(n)
0

= x
�

(n−1)
0

+ ηn(n−1)
0 linking the position of a given point standing in

the fluid domain or on the free boundary in two successive reference configurations, as sketched
in Fig. 7(b). In other words, the steady-state solution is obtained by considering the governing
equations (A1) on a succession of physical domains such that the nth of them only differs slightly
from the (n − 1)th one, the latter being considered as the new reference domain during the nth
iteration.
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In cases where the free boundary is a closed surface (such as for a bubble), the enclosed volume
must stay equal to its initial value, Vb, provided effects of compressibility are negligible in the
corresponding medium. This implies

Lvol[q′] ≡
∫

�b,0

ηdS0 =
∫

�b,0

(1 + ∇�0 · ξ)dV0 − Vb on �b,0. (A2)

The various matrices involved in the problem (A1)–(A2) are built and inverted within the finite-
element software FreeFem++. The volume fields (u, p) are discretized following a Taylor-Hood
scheme, i.e., the mixed finite-element Lagrange basis (P2, P1). The volume displacement field ξ is
discretized within the P2 finite-element space. The free-boundary displacement field η is discretized
within the Galerkin-Fourier space. This displacement is orthogonally projected onto the local
Fourier basis φk in the form η(s0) = ∑Nb

k=0 φk (s0)Xη(k), with Xη(k) the coefficients of η in that
basis, Nb the number of Fourier elements and s0 the arc length coordinate.

In the vicinity of a saddle-node bifurcation, the Jacobian matrix of (A1) is ill-conditioned. In
particular it is singular at the bifurcation point. In such situations, instead of the usual continuation
procedure performed on some control parameter, for instance, We, we continue the solution on
a suitable arc length with a pseudo-arc-length continuation method. This technique consists in
replacing the Jacobian matrix with a bordered matrix, i.e., a matrix with an additional column and
an additional row. The practical application of this technique, i.e., the definition of the arc length,
depends on the parameters of the problem under consideration. In the context of this paper, we build
the arc length on the pressure within the bubble, pb, and the strain rate of the base flow, S, so that the
infinitesimal arc length is (ds)2 = (d pb)2 + (dS)2. If (A1) [or (A1)–(A2)] is written symbolically
in the form L|q0 [q′] = −F(q0), the bordered system then takes the form

(
L|q(n−1)

0
Dbc

d pb

ds
dS
ds

)(
q′
S′

)
=

( −F
(
q(n−1)

0

) − Dbc
(
S(n−1)

0

)
− d pb

ds

(
p(n−1)

b,0 − p(0)
b,0

) − dS
ds

(
S(n−1)

0 − S(0)
0

) + �s

)
, (A3)

where the state vector q′ is augmented with the update of the strain rate, S′, and �s denotes the arc
length step. The operator Dbc, which takes the form of a column vector in the bordered matrix, serves
to impose the boundary conditions on the velocity field and only depends on S. The derivative d pb

ds

acts on the pressure within the bubble only, while dS
ds only acts on the strain rate. These derivatives

are determined at the initial step of the Newton method by inverting the matrix operator L|q(0)
0

and

computing the derivative of q with respect to S as dq
dS |q(0)

0
= −L−1|q(0)

0
· dF

dS (q(0)
0 ). Then, selecting

the component d pb

dS |q(0)
0

in the vector field dq
dS |q(0)

0
and making use of the definition (ds)2 = (d pb)2 +

(dS)2, the extra derivatives involved in (A3) are computed as d pb

ds = d pb

dS |q(0)
0

{( d pb

dS |q(0)
0

)2 + 1}−1/2 and
dS
ds = {( d pb

dS |q(0)
0

)2 + 1}−1/2.
Once the steady state is reached, the linear stability of the corresponding solution is determined

by examining the fate of disturbances with the eigenmode form q′ = [û, p̂, p̂b, ξ̂, η̂]Te−iωt , the hatted
complex amplitudes depending on x0. In cases where the base configuration is axisymmetric, as in
the physical problem considered in this paper, we rather consider disturbances of the form q′ =
[û, p̂, p̂b, ξ̂, η̂]Teimθ−iωt , with θ the polar angle of the (r, θ, z) cylindrical coordinate system and
m the corresponding wave number, the hatted amplitudes depending now only on r and z. Such
solutions are obtained by solving the eigenvalue problem

−iω
(
û − ξ̂ · ∇�0 u0

) + LNS[q̂] = 0 in �0,

Ldiv[q̂] = 0 in �0,

−iωη̂ + Lkin[q̂] = 0 on �b,0,

Ldyn[q̂] = 0 on �b,0,

Lcom[q̂] = 0 on �b,0,

LE [ξ̂] = 0 in �0,

(A4)
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supplemented with

Lvol[q̂] = 0 on �b,0 (A5)

if the constraint (A2) holds for the steady state and the perturbation. In (A4) the term iωξ̂ · ∇�0 u0

arising in the linearized momentum equation is the acceleration of the moving domain, which
must be subtracted to obtain the actual fluid acceleration in �0. Here the reference domain is that
corresponding to the steady-state solution of (A1), i.e., �0 ≡ �

(N )
0 , with N the number of iterations

carried out to reach the steady solution through the Newton method, as depicted in Fig. 7(b). The
eigenpairs of (A4)–(A5) are obtained using the SLEPc library.
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