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We study the dynamics of a rounded subsonic impinging jet. We investigate this prob-
lem by solving the compressible linearised Navier–Stokes equations around a laminar
baseflow, with a normal form issued from a weakly-nonlinear approach and by means of
axisymmetric time-stepping simulations. The linear stability analysis shows the existence
of a family of global modes for every Mach number, which are supported by a non-local
feedback loop. In order to get an insight to the core of the instability mechanisms, we
propose a non-local decomposition of the structural sensitivity and the endogeneity con-
cepts. The use of these sensitivity maps allows us to differentiate two distinct instability
mechanisms. The instability is always initiated by a shear layer instability. Nonetheless,
the closure of the feedback differs. At large Mach number, the production of divergence
lies inside the jet, and it is responsible for the backward propagation of the guided jet
mode. On the other hand, at low Mach number, the wavemaker of the instability is
along the region where the module of the linearised Lamb vector is largest. Therefore,
indicating that the closure mechanism is a pressure wave issued from a vortical source.
We also provide a qualitative description of the tonal and broadband noise by means
of the normal form of the bifurcation. Based on a phenomenological reasoning, we also
suggest a stochastic model which accounts for the low coherence of the sources of sound
at low Mach number. Such a model reproduces reasonably well the sound pressure level
measured from time-stepping simulations.

1. Introduction – Aim of the study

It has been established that intense acoustic tonal sound is generated by the im-
pingement of a high subsonic or supersonic jet onto a wall. Early experimental studies
carried out by many researchers, including Powell (1953, 1961), Wagner (1971), Neuwerth
(1974), Preisser (1979), Ho & Nosseir (1981); Nosseir & Ho (1982) observed that the
frequency varies with the distance to the solid boundary, and it is organised in stages.
Furthermore, the dynamics of the jet, for instance pressure in the near-field and in the far-
field, were found to peak at particular frequency for high subsonic Mach numbers and to
be broadband for low Mach numbers (Nosseir & Ho 1982). The staging phenomenon led
Powell (1953) to conjecture that the self-sustained mechanism was a two-stage process,
which involves the vortical structures convected downstream and the acoustic waves
propagating upstream from the solid boundary to the nozzle. Similar feedback loops have
been also observed in supersonic impinging jets. The establishment of the feedback loop
has been studied experimentally by Norum (1991) and numerically by Gojon et al. (2016);
Bogey & Gojon (2017) for ideally expanded supersonic jets. Similarly, for underexpanded
jets, there is experimental evidence of the existence of the loops by Risborg & Soria
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(2009); Buchmann et al. (2011); Mitchell et al. (2012) and numerical by Dauptain et al.
(2012); Gojon & Bogey (2017a). Ho & Nosseir (1981) proposed a simplified frequency
selection criterion, assuming the wave propagating upstream to be a free-stream acoustic
wave propagating outside the jet. Nevertheless, later studies established that the feedback
loop is closed by a guided jet wave propagating mostly inside the jet (Tam & Ahuja
1990). Tam & Ahuja (1990) proposed a theoretical model for the frequency selection.
The model considers a Kelvin-Helmholtz mode with a constant frequency and guided
jet waves classified by their radial and azimuthal structure with different dispersion
relations. The authors conjectured that the loop is closed by the Kelvin-Helmholtz mode
and the least-dispersive guided wave. Following this reasoning, they concluded that tonal
noise does not exist below a cut-off Mach number because the frequency of the guided
waves does not match the frequency of the Kelvin-Helmholtz mode. Particularly, the
properties of the guided waves, allow us to explain the frequencies and the axisymmetric
or helical nature of the acoustic tones (Gojon et al. 2016; Bogey & Gojon 2017; Jaunet
et al. 2019; Varé & Bogey 2022a,b). These guided waves are involved in other resonance
phenomena, for examples in screech generation mechanism, as studied by Gojon & Bogey
(2017b); Edgington-Mitchell et al. (2018); Mancinelli et al. (2019); Edgington-Mitchell
(2019) or in jet-plate interactions, as recently investigated by Jordan et al. (2018); Tam
& Chandramouli (2020); Varé & Bogey (2022a). They also play a role in the generation
of acoustic tones near the nozzle (Towne et al. 2017; Brès et al. 2018; Bogey 2021) and
in the upstream acoustic far field of free jets (Bogey 2022).

The paper aims to rationalize previous experimental results on the sound emission
from a jet impinging on a perpendicular flat surface at large subsonic Mach numbers.
We have several objectives. First, we analyse the properties of the feedback loop, by
means of a Helmholtz-Hodge decomposition that allows a global decomposition of the
flow perturbations and a local decomposition into the underpinned waves of the baseflow,
i.e., we measure the relative magnitude of the acoustic and hydrodynamic components of
the global mode. It results that for a sufficiently large Reynolds number, there is always a
global unstable mode. However, at low and large Mach numbers of the jet, the mechanisms
responsible for the closure of the feedback mechanism are distinct. In particular, that
connects with the cut-off criterion of Tam & Ahuja (1990) for the existence of tonal
or broadband noise. Tam & Ahuja (1990) conjectured that below the cut-off Mc ≈ 0.6
high acoustic sound emissions are not possible because the Strouhal of the first guided
wave does not match the Strouhal of the Kelvin-Helmholtz instability. Such a conclusion
has been widely used in literature to justify the existence of broadband noise emissions
below the cut-off Mach number. However, we will show that the feedback mechanism
responsible for high acoustic tonal emissions at high subsonic Mach numbers, also exist
at low Mach numbers, even at the incompressible limit for the laminar jet, nonetheless
distinct closure mechanisms cause the instability. This is shown following a three-step
approach:

(i) Determine the linear global mode associated to the feedback mechanism at every
Mach number.

(ii) Determine the nature of the feedback-loop at low and high Mach numbers. We
introduce a novel decomposition of the structural sensitivity map.

(iii) Perform a wave decomposition of the feedback global mode into Kelvin-Helmholtz
and guided waves.
Such a process allows us to unveil the instability core of the feedback-loop and to analyse
the physical mechanisms supporting the instability. In addition, the wave decomposition
allows us to determine the local characteristics in terms of waves of the loop, e.g., the
reflection coefficient at neutrality.
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Furthermore, we analyse the nonlinear dynamics of the impinging jet flow configuration.
Specifically, we will show that the frequencies involved in the feedback process are mostly
determined by geometrical features and the velocity of propagation in the medium, i.e.
Mach number and convective velocity. The eigenvalues associated to the global modes are
found to form a discrete arc, with a nearly constant frequency distance ∆ω. Furthermore,
performing the expansion of the flow into base flow and harmonic contributions,

q(x, t) = q0(x) +
∑N
k=1

[
AkqAkeiωkt + c.c.] + . . . (1.1)

where the higher harmonics and the zeroth-harmonic modification of the meanflow
have been omitted. With such an ansatz, we have carried out a normal form reduction
approach (Sierra-Auśın et al. 2022; Sierra et al. 2020b) to determine the reduced-order
equation that governs the dynamics of the feedback mechanism, the normal form in polar
coordinates Ak = rkeiφk is as follows

ṙj = rj
(
λj +

∑N
k νjkr

2
k) + Fres(r, Ψ)

ψ̇j = Fψj (r, Ψ).
(1.2)

The vector r = [r1, . . . rN−1]T with rj for j = 1, . . . N is the vector of (real) amplitudes
proportional to each normalized global mode that characterizes the amplitude of the limit
cycle, and Ψ = [ψ1, . . . ψN ]T is the vector of resonant phases, where each resonant phase
is a function of an imperfect quantisation of the feedback modes Ψj = ∆φj −∆φj−1 =
(φj+1−φj)− (φj−φj−1). Herein, we treat the case with N = 3, and the vector fields Fψj
and Fres will be specified later on for this case. In the case of a perfect equi-distribution of
feedback modes (ωk = k∆ω), the limit cycles would be in a perfect resonance. However,
nonlinear modulations of the frequency, which could be accounted by the disparity in
the amplitude of local sources of divergence of the velocity field perturbations or vortex-
sound responsible for the closure of the feedback-loop.
In addition, in order to model the broadband behaviour characteristic of low Mach
number flows, we propose a stochastic model which is based on a phenomenological
reasoning. It accounts for the low temporal coherence of the sources of sound at low
Mach number, which in turn induce a frequency mismatch in the frequency selection
criterion. The model is able to capture the qualitative features of low and large Mach
number flows.
The outline of the manuscript is as follows. First, the flow configuration and the numerical
approach are presented in section 2. Second, in section 3 we describe some basic properties
of the baseflow, and we show the main results of the linear stability study, highlighting
two mechanisms of closure of the feedback-mechanism. Third, in section 4 we carry out a
Helmholtz-Hodge decomposition in order to get a further insight into the hydrdodynamic-
acoustic feedback loop by means of a novel non-local structural sensitivity decomposition.
Therein, we also perform a weakly non-parallel decomposition of the global mode into
the waves supported by the baseflow with the aim of determining the reflection coeffi-
cient. Then, in section 5 we analyse the interaction between limit cycles by means of
axisymmetric time-stepping simulations and the normal form. Finally, in section 6 we
summarise the main findings of the study.
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Figure 1: Diagram of the domain. The physical domain, represented as a white area, is
complemented with a radial buffer layer, shown as a light grey shaded zone.

2. Numerical approach

2.1. Governing equations

Let us introduce the compressible Navier–Stokes equations as the governing equations
of motion of a perfect gas described in primitive variables q = [ρ, ur, uθ, uz, p, T ]

T
, and

the set of control parameters η = [Re,M∞]T . These are formally expressed as

B
∂q

∂t
= F(q,η) with B = diag(1, ρI, ρ, 0), (2.1)

F(q,η) = −


u · ∇ρ+ ρ∇ · u

ρu · ∇u−∇p+∇ · 1
Reτ(u)

(γ − 1)
[
ρT∇ · u− γM

2
∞

Re τ(u) : D(u)
]
− ρu · ∇T + γ

Pr Re∇
2T

−ρT + 1 + γM2
∞p

 , (2.2)

The geometric configuration used in the analysis of the acoustic radiation of a rounded
impinging jet is sketched in fig. 1. It consists of a pipe that is subdivided into two zones,
a first pipe with slip adiabatic walls and a second pipe of length L with no-slip adiabatic
walls. The physical domain, depicted as a white region in fig. 1 is complemented with
an absorbing boundary layer in the far-field, which is either a complex mapping region
(Sierra et al. 2020a) for the linear computations of section 2.2 or a sponge region (Fani
et al. 2018) for the nonlinear computations of section 2.3. In our formulation, the primitive
variables have been made dimensionless to

x =
x̃

D
, t =

t̃ũz|z=0

D
, ρ =

ρ̃

ρ̃|fs
, u =

ũ

ũz|z=0
, T =

T̃

T̃ |fs
,

p =
p̃− p̃|fs
ρ̃|fsũz|2z=0

, M∞ =
ũz|z=0

(γRgT̃ |fs)1/2
, Re =

ρ̃|fsũz|z=0D

µ(T̃ |fs)

(2.3)

where Rg is the ideal gas constant, ũz|z=0 denote the average value of the axial velocity

at the cross-section z = 0, and ρ̃|fs, p̃|fs, T̃ |fs denote the values on the far-field or
free-stream. The Navier–Stokes equations eq. (2.1) are complemented with the following
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boundary conditions,

uz = 1, ur = 0, T = (1− γ−1
2 M2

∞) on ∂Ωin
uz = 0, ur = 0, ∇T · n = 0 on ∂Ωwall
ur = 0, ∇T · n = 0 on ∂Ωslip
ρ = 1, p = 0, T = 1 on ∂Ωout.

(2.4)

The inlet boundary condition models the inflow from a reservoir with a constant total
temperature equal to unity. In such a way, the energy of the system is kept constant
for every Mach number M∞. The length of the pipe is a constant of the problem that
determines the height of the boundary layer, here we have chosen L = 2.5D. The flow
in the slip region is nearly constant, thus the length of this region is not an important
parameter of the problem. The location of the start of the absorbing layer is chosen to
be z−∞ = r∞ = 15D. Finally, the distance between the nozzle end location (z = 0) and
the impinging wall is H, which is kept constant H = 5D.

2.2. Linear Navier–Stokes equations

The asymptotic linear stability of a steady-state q0 is examined from the temporal
evolution of an infinitesimal perturbation, i.e. by performing the following expansion
q = q0 + ε(q̂e−iωt + c.c.) where ε� 1. The steady-state q0 is said to be asymptotically
linearly stable if there is not an eigenvalue with a positive growth rate, in other words
for every eigenvalue ωi < 0, otherwise it is said to be linearly unstable. The perturbation
q̂ and its eigenvalue iω are determined by solving the following eigenvalue problem

−iωB|q0 q̂ + DF|q0(q̂,η) = 0, (2.5)

The linear Navier–Stokes equations eq. (2.5) are complemented with the following ho-
mogeneous boundary conditions,

ûz = 0, ûr = 0, T̂ = 0 on ∂Ωin
ûz = 0, ûr = 0, ∇T̂ · n = 0 on ∂Ωwall
ûr = 0, ∇T̂ · n = 0 on ∂Ωslip
ρ̂ = 0, p̂ = 0, T̂ = 0 on ∂Ωout.

(2.6)

In the following, we will also consider the adjoint eigenmode q̂†, which is a solution of
the adjoint eigenvalue problem

iωB|q0 q̂
† + DF†|q0(q̂†,η) = 0. (2.7)

where · is employed for the complex conjugation. The boundary conditions of the adjoint
problem are the same as the direct, eq. (2.6). The adjoint modes are normalised by the
B−inner product, that is 〈q̂†, q̂〉B = 1.

2.3. Time-stepping approach

The Navier–Stokes equations (eq. (2.1)) are evolved in time with a fully implicit time
integrator. We use a third order BDF scheme to integrate in time the state variable q.
The semi-discrete in time equations are as follows,

B
[11

6
q(tn+1)− 3q(tn) +

3

2
q(tn−1)− 1

3
q(tn−2)

]
= −∆tF(q(tn+1),η) (2.8)
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Each time-step, the nonlinear problem eq. (2.8) is solved with a Newton method,[
11
6 B +∆tDF|q`(tn+1)

]
δq = B

[
3q(tn)− 3

2q(tn−1) + 1
3q(tn−2)

]
−∆tF(q`(tn+1),η)

q`+1(tn+1) = q`(tn+1) + δq.
(2.9)

The assembling of the jacobian matrix DF|q`(tn+1) is the most expensive step, and as it
is conventional, a frozen jacobian matrix is adopted all along the Newton method, that
is, DF|q`(tn+1) = DF|q(tn). Furthermore, provided that the time-step is not too large, the
jacobian matrix is kept constant for few time-steps, as long as the number of iterations
to convergence of the Newton method do not drastically grow.

2.4. Normal form reduction

In the following, we summarize the normal form reduction procedure, which is carried
out to study the interaction between distinct periodic orbits resulting from global
instabilities associated to the main feedback mechanism. A comprehensive explanation
is left to appendix B.
Near the onset of the bifurcation, dynamics can be reduced to the normal form. The
coefficients of the normal form are computed following a multiple scales expansion of the
solution q of eq. (2.1). The expansion considers a two scale development of the original
time t 7→ t + ε2τ , here ε is the order of magnitude of the flow disturbances, assumed
small ε� 1. Herein, we consider the small parameters εM2 and εν , which are a function
of the Mach number and Reynolds numbers at the far-field,

ε2
M2 =

(
M2
∞,c −M2

∞
)
∼ ε2 and ε2

ν =
(
νc − ν

)
=
(
Re−1

c − Re−1
)
∼ ε2.

The technique decomposes time into a fast timescale t of the phase associated to the
self-sustained instabilities and a slow timescale related to the evolution of the amplitudes
zi(τ), introduced in eq. (2.11), for i = 1, 2, 3. The ansatz of the expansion is as follows

q(t, τ) = qb + εq(ε)(t, τ) + ε2q(ε2)(t, τ) + ε3q(ε3)(t, τ) +O(ε4) (2.10)

In the following, we shall consider the normal form equation resulting from the interaction
of three modes identified by linear stability, that is,

q(ε)(t, τ) =
∑N
k=1

(
zk(τ)q̂(zk)(r, z)e

iωkt + c.c.
)

(2.11)

Note that the expansion of the LHS of eq. (2.1) up to third order is as follows

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+ B

∂q(ε)

∂τ

]
+O(ε4), (2.12)

and the RHS respectively,

F(q,η) = F(0) + εF(ε) + ε2F(ε2) + ε3F(ε3) +O(ε4). (2.13)

Then, the problem truncated at order three is reduced to a low-dimensional system
governing the complex amplitudes zj(t). Herein we consider the case of N = 3, the
general case is briefly discussed in appendix B.5. The normal form is as follows,

ż1 = z1

(
λ1 + ν11|z|21 + ν12|z|22 + ν13|z|23

)
+ χ1z

2
2z3

ż2 = z2

(
λ2 + ν21|z|21 + ν22|z|22 + ν23|z|23

)
+ χ2z1z2z3

ż3 = z3

(
λ3 + ν31|z|21 + ν32|z|22 + ν33|z|23

)
+ χ3z

2
2z1

(2.14)

where νk`, λk, χk ∈ C for k, ` = 1, 2, 3. The real part of the linear terms, named λk,
correspond to the growth rate of the kth mode. Respectively, the imaginary part of λk is
associated to the frequency variation of the kth mode with respect to the frequency
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Figure 2: Spatial distribution of the Mach number for a baseflow at (a) Re = 2200 and
M∞ = 0.2, (b) M∞ = 0.6 and Re = 800. (c) Radial evolution of the Mach number (blue
for the profiles of (a) and red for (b)) from the nozzle exit (z = 0, represented with the
darkest colour) to z = 4D (light colour), with an equidistant step of a diameter.

of the neutral mode, i.e., with respect to the frequency ωk determined from linear
stability analysis. The terms νk` are the third order self (k = `) and cross interaction
(k 6= `) coefficients. The resonant coefficients χk arise because of the quantization of
the eigenvalues in the spectrum at a nearly constant distance ∆ω, i.e. frequency gaps
∆ωi = (ωi+1−ωi) are nearly constant, see fig. 15 (a) in appendix B.5. In the analysis, we
consider that the imperfections in the frequency difference between two modes is small,
that is, (∆ωi+1 −∆ωi) ∼ ε2. In this way, the term z2

2z3 is nearly resonant with z1, or in
other terms ω2 −∆ω2 ≈ ω1.

3. Linear global stability procedure – Parametric analysis

3.1. Baseflow properties

We define the baseflow as the steady-state solution of the Navier–Stokes equations
satisfying the boundary conditions listed in eq. (2.4). The baseflow is determined by two
dimensionless parameters, the Reynolds number (Re) based on the averaged velocity at
the nozzle exit and the Mach number (M∞) based on the averaged velocity at the nozzle
exit and the speed of sound at the far-field. Given this definition of the Mach number
based on the speed of sound at the far field (M∞), the actual Mach number of the flow
can be considerably larger, specially for M∞ ∈ [0.5, 0.6], where compressibility effects are
significant. Figure 2 reports the spatial distribution of the Mach number in the region
between the nozzle and the impinging wall. Figure 2 (c) shows the radial evolution of
the velocity profile. Since we consider a laminar baseflow the boundary layer thickness
at the nozzle exit (darker velocity profile in the figure) is considerably larger than for a
turbulent mean flow profile, and it is around a tenth of the diameter.

3.2. Linear stability – Compressibility effects

We analyse the effects of the Mach number on the feedback mechanism. First, we
determine the dominant global linear modes for every subsonic Mach number, which
corresponds to M∞ ∈ [0, 0.6]. Figure 3 shows the neutral curves of linear stability of the
steady-state. We follow the evolution of the leading five modes, which are characterised
by a slow frequency evolution with respect to the Mach number and a nearly constant
frequency ∆ω distance between modes. At a given Mach number, the modes are charac-
terised by their axial wavenumber; the dominant modes at M∞ = 0.6, displayed in fig. 3
(g-i), are characterised by seven, six and eight half-wavelengths, respectively. Nonetheless,
such a characterisation is not constant with varying Mach number, the number of axial
wavelengths can vary up to a unit. The change of the axial wavenumber is a continuous
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Figure 3: Bifurcation diagram showing the neutral curves of stability and evolution of the
critical pulsation ωr of the axisymmetric steady-state flow for a nozzle to wall distance
H/D = 5. Visualization of the critical eigenmode (real part of the axial velocity) with
overlaid steady-flow streamlines. Each visualization contains a superposed image of the
structural sensitivity map.

process and occurs within the interacting region between the axial and radial shear layers,
i.e. 4.5D < z < H.
The primary instability corresponds to a Hopf bifurcation, leading to a periodic solution
with ω ≈ 3.7 (blue line in fig. 3) for M∞ < 0.49 and to frequency ω ≈ 4 (green line in
the figure) for M∞ > 0.49. The mode switching happens in a codimension Hopf-Hopf
two point, which it has also been experimentally observed in Nosseir & Ho (1982), where
they also detected hysteresis-like behaviour between two modes.
The non-local feedback mechanism selects the frequency of the global mode for every
Mach number, however the strength of the feedback loop rapidly decreases with the Mach
number. This feature may be observed directly from the global modes by comparing the
ones obtained at large subsonic Mach number (M∞ = 0.6, MJ ≈ 0.9) represented by
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subfigures (g-i) and the ones for lower Mach numbers, see subfigures (a-f). Please note
that the amplitude of the modes is normalised in such a way that the perturbation energy
(Chu 1965) is unitary.
Figure 3 also displays, in an inset located at the upper left location of each subfigure, the
structural sensitivity, introduced by Giannetti & Luchini (2007) and defined herein in
section 4.1. The structural sensitivity highlights the spatial location where a generic
modification of the instability core produces the largest drift in the growth rate or
frequency of the mode. Therefore, it is hereafter considered as the core of the instability.
For large subsonic Mach numbers (0.5 < M∞ < 0.6) the structural sensitivity has
an extended compact support within the axial shear layer and the jet region. It is
intermittent, located at the axial position of the pulses in the axial shear layer of the
direct mode, excluding the region near the wall (H−D < z < H). Thus, suggesting that
the region near the wall does not play a dominant effect to the instability at large Mach
number. Tentatively, one can argue the following about the two types of peaks of the
structural sensitivity. The dominant peaks of the structural sensitivity at the shear-layer
correspond to the energy transfers between the baseflow shear and the perturbation. And
the large amplitude peaks within the jet may be the region where the vortical fluctuations
are transformed into acoustics via a coupling mechanism. It may be observed from fig. 4
(a) that the region of largest divergence of the mode matches with the spatial location
highlighted by the structural sensitivity. One can determine the production of fluctuating
divergence from the divergence of the linearised momentum equation, that is,

−iω∇ · û +

Cdiv
A︷ ︸︸ ︷

u0 · ∇(∇ · û) +∇ · ( ρ̂
ρ0

u0 · ∇u0) = −

Cdiv
P,b︷ ︸︸ ︷

û · ∇(∇ · u0)−

Pdiv
a︷ ︸︸ ︷

∆p̂

ρ0
+
∇p̂ · ∇ρ0

ρ2
0

−
(

(∇û)T : ∇u0 + (∇u0)T : ∇û
)

︸ ︷︷ ︸
Cdiv
P,a

+
1

Re
∇ ·
(
∇ · τ(û)

)
︸ ︷︷ ︸

Pdiv
b

(3.1a)

Note that, eq. (3.1) can be written entirely in terms of velocity and density fluctuations,
if we assume that the pressure fluctuations are isentropic, i.e., M2

∞p̂ = ρ̂T0. The module
of the convection term, hereafter referred to as Cdiv

A corresponds to the convection
of the divergence and density fluctuations by the baseflow. This term is displayed
in fig. 4 (b). The spatial support of Cdiv

A lies within the jet region and the radial
shear layer. Nonetheless, despite the fact that it is supported at the location of the
maximum fluctuating divergence, one cannot associate this term as a source of divergence
production. It merely advects fluctuating divergence and density, that has been already
produced within the flow. The spatial support of term Cdiv

P,a, displayed in fig. 4 (d),
mostly lies within the shear layer and in regions with non-zero divergence of the baseflow
(not shown). P div

a is the pressure source term whose spatial support lies in the shear
layer, in a region within the jet near the wall (H − D < z < H) and the region near
the nozzle exit. The largest local contribution to the fluctuating divergence is due to
this term. The other two production terms (Cdiv

P,b and P div
b ) are of small magnitude, and

their spatial support is not found within the region of the maximum of the divergence.
However, we have previously argued that the pressure, if we assume an isentropic process
at the perturbation level, plays a similar role to the one of the density. Tentatively, one
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Figure 4: Module of the (a) divergence of the mode; (b) module of the term Cdiv
A in

eq. (3.1a); (c) module of the term P div
a in eq. (3.1a); (d) module of the term Cdiv

P,a in
eq. (3.1a).

may argue that the pressure serves to enforce the continuity condition, thereby inducing
a modification of the volume flux. In a similar way, by taking the material derivative of
the linearised continuity equation, it is possible to derive a generalised wave equation,
where the dominant source term is a term proportional to the fluctuating divergence
(not shown here). Then, we could say that in a second step, the divergence of the
mode induces an acoustic pulse that is propagated as a longitudinal density wave, and
therefore providing the closure of the feedback-loop.

On the other hand, for low subsonic Mach numbers (M∞ < 0.4), the structural
sensitivity has an extended support within the radial shear layer (2.5D < r < 5D).
In this case, the structural sensitivity has a thin continuous structure. To understand
the nature of the wavemaker at low Mach numbers, we write the linearised momentum
equation in the Crocco’s form (Rienstra & Hirschberg 2004),

−iωû +∇ ·
(
(u0 · û +

p̂

ρ0
)I− τ(û)

)
= u0 × ω̂ + û× ω0, (3.2)

where we have neglected the term −∇ρ0p̂
ρ20

, which is of small magnitude at low Mach

number. We can readily observe that the linearised Lamb vector u0 × ω̂ + û× ω0 acts a
source term, and one could argue that it corresponds first to the region driving the hydro-
dynamic instability, and second to a source of sound, which is in turn, responsible for the
production of the backward propagating acoustic pressure that closes the feedback-loop
(Powell 1990; Howe 1975). Figure 5 displays the linearised Lamb vector, which is localised
within the radial shear layer and at the same spatial location as the structural sensitivity
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Figure 5: (a-b) Axial and radial components, respectively, of the real part of the linearised
Lamb vector u0 × ω̂ + û × ω0 at M∞ = 0.2 and Re = 2200. (c) Module of the Lamb
vector, the arrows indicate the direction.

at low Mach numbers. Thus, providing a rationalisation to the nature of the wavemaker,
which in this situation is located along the vortex sheet near the impinging wall. For the
sake of consistency, please note that the Lamb vector at large Mach numbers also possess
a similar structure, that is, it is a thin-elongated structure along the vortex sheet (not
shown). However, the structural sensitivity does not have this kind of structure, thus
suggesting that vortex sound is not the dominant vortical-acoustic coupling.

4. Decomposition of the feedback mechanism

In order to gain a better understanding of the feedback process responsible for the
instability, we perform two types of decomposition. First, a Helmholtz-Hodge decompos-
ition of the global linear mode q̂, which allows distinguishing between the acoustic and
vortical+entropic components of the flow. Additionally, such a decomposition allows us
to formulate a finer structural sensitivity concept. This decomposition of the structural
sensitivity highlights the space location where a vortical (resp. acoustic) modification in
the structure of the problem is able to produce the greatest drift in the eigenvalue of the
operator projected onto the acoustic or vortical component. The study is then pursued
with the analysis of the feedback-loop with the endogeneity map, which provides further
access to the relation between the growth rate or frequency of the mode in terms of
underlying the physical mechanisms. We finish the section with a decomposition of the
global mode in terms of the local waves underpinned by the baseflow, which allows us to
determine the reflection coefficient between the shear layer wave and the guided jet wave
at neutrality.

4.1. Decomposition of the linear perturbation

The linear perturbation q̂ is herein decomposed into three components: acoustic,
hydrodynamic and entropic. There is a large literature in decomposition of acoustic
sources (Ewert & Schröder 2003; Spieser 2020) to compute acoustic propagation effects.
In our case, we follow the reciprocal reasoning, we adopt a monolithic computation of
the compressible flow, i.e. we do not decompose the flow in acoustic sources and acoustic
propagation, and we would like to unveil the feedback loop responsible for the instability
mechanism and the frequency selection.
For this purpose, we adopt a Helmholtz-Hodge decomposition (Schoder et al. 2020) of
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the perturbation velocity field into acoustic (potential) and hydrodynamic (solenoidal)

û = ûac + ûhyd = ∇φc +∇× Ψ (4.1)

applying divergence to eq. (4.1), the potential φc is determined from the following Poisson
equation

∆φc = ∇ · û in Ω
∇φc · n = û · n on ∂Ω.

(4.2)

The hydrodynamic component of the velocity is subsequently determined by subtracting
ûhyd = û− ûac = û−∇φc. Note that, the uniqueness of the Helmholtz decomposition is
subjected to the L2-orthogonality condition, in our case satisfied by the suitable boundary
condition of eq. (A 6), and the decay of the velocity field at the far-field (Schoder et al.
2020).
The pressure component of the mode q̂ is determined from the momentum equation

− 1

ρ0
∇p̂ = iωû + û · ∇u0 + u0 · ∇û +

ρ̂

ρ0
u0 · ∇u0 −

1

Re
∇ · τ(û), (4.3)

from the decomposition p̂ = p̂ac + p̂hyd + p̂s and applying the divergence operator to the
momentum equation, we obtain the following equations

− 1

ρ0
∆p̂ac +

∇ρ0 · ∇p̂ac

ρ2
0

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂ac

ρ0

)
= iω∇ · ûac +∇ ·

(
u0 · ∇ûac

)
+∇ ·

(
ûac · ∇u0

)
(4.4a)

− 1

ρ0
∆p̂hyd +

∇ρ0 · ∇p̂hyd

ρ2
0

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂hyd

ρ0

)
= ∇ ·

(
u0 · ∇ûhyd

)
+∇ ·

(
ûhyd · ∇u0

)
(4.4b)

with decay at the far-field r → ∞. Details of the derivation are given in appendix A.1.
Finally, the entropic part of the pressure is recovered by subtracting the two other
components to the pressure of the mode p̂s = p̂ − p̂ac − p̂hyd, which accounts for the
dissipation effects of the viscous stress-tensor.
The other two components, temperature and density, are determined as follows. The
acoustic and hydrodynamic components are considered to evolve isentropically and are
directly determined from the pressure,

T̂ac = (γ − 1)M2
∞p̂ac, T̂hyd = (γ − 1)M2

∞p̂hyd, T̂s = T̂ − T̂ac − T̂hyd, (4.5)

ρ̂ac = M2
∞
ρ0

T0
p̂ac, ρ̂hyd = M2

∞
ρ0

T0
p̂hyd, ρ̂s = ρ̂− ρ̂ac − ρ̂hyd. (4.6)

Let us illustrate the application of this decomposition to a particular example. For that
purpose, we have chosen the global mode (h) of fig. 3. Figure 6 depicts the components
of the density fluctuations ρ̂. The hydrodynamic density fluctuations ρ̂hyd, being only
hydrodynamic, resemble to the hydrodynamic pressure fluctuations, which result from a
Kelvin-Helmholtz instability of the shear layer, at low Mach numbers (Sierra-Ausin et al.
2022). The entropic component of the density ρ̂s, which is illustrated in (c), is localised
within the shear layer. In this component, one can perfectly appreciate the wavelength
and the number of nodes of forward wave composing the feedback loop, in this case the
forward wave has six nodes. The acoustic component of the density ρ̂ac, depicted in (a),
is composed of a radiating part and the guided jet wave, which is localised within the
jet region. In this case, the guided jet wave is composed of two waves, i.e. it has four
nodes. From this decomposition, we can formulate a criterion for the frequency selection,
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Figure 6: Density decomposition of the global mode with St ≈ 0.5 at criticality (Re =
900) at M∞ = 0.6 (Mode (h) in fig. 3. (a) Acoustic component of density ρ̂ac. (b)
Hydrodynamic component of density ρ̂hyd. (c) Entropic component of density ρ̂s

similar to the Rössiter modes,

St−1 =
H/D

Uc,SLnhyd
+

H/D

M−1
∞ nac

, with Uc,SL ≈
1

2
Ur=0 (4.7)

such a criterion considers that the phase velocity of the hydrodynamic forward mode
corresponds to the inviscid approximation, that is, Uc,SL takes the mean value between
the two velocities of the shear layer, and the guided jet wave is propagated back nearly at
the speed of sound of the far-field. Such a criterion provides a way to classify the global
modes from the number of half-wavelengths of the guided jet wave mode (nac) and the
hydrodynamic mode (nhyd).

4.2. Non-local structural sensitivity decomposition

The global instability is caused by a feedback process between two travelling waves,
which impedes a direct local definition of the wavemaker or structural sensitivity. That
is, we can still formulate the concept of structural sensitivity, but it is no longer localised
in space, i.e., it displays a support all along the interacting path between the two
travelling waves. We briefly recall the concept of structural sensitivity, before introducing
an adequate decomposition of the wavemaker for global instabilities generated by non-
local feedback process. The adjoint equations are herein used to evaluate the effect of a
linear harmonic forcing H(q̂) ≡ δ(x− x0)PHC0Pq̂q̂,(

− iωB|q0 + DF|q0

)
q̂ = H(q̂). (4.8)

C0 is a generic linear operator acting on q̂, and PH a diagonal matrix that selects the
type of forcing. In the following, we neglect mass injection to the system, and we simply
consider momentum forcing and a source of heat release, that is, PH = diag(0, I, 1, 0, 0).
The projection operator Pq̂ is also a diagonal matrix that selects the dependency of the
forcing on the perturbation. The structural sensitivity tensor is therefore defined as

iδω = 〈PHq̂†, δ(x− x0)C0Pq̂q̂〉 6 ||C0||||PHq̂†||L2 ||Pq̂q̂||L2 = ||C0||Ss(x0), (4.9)

that is, the structural sensitivity map is defined as Ss(x0) ≡ ||PHq̂†||L2 ||Pq̂q̂||L2 . The
scalar field Ss is then an upper bound function for the eigenvalue variation, and it can
be employed to determine locations where the feedback is stronger. Therefore, allowing
an identification of the regions where the instability mechanism acts. However, when it is
not localized within a small physical region, it does not clearly identify the wavemaker,
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but a possible interacting region between the components of the global mode.
Decomposing the mode q̂ we can rewrite the harmonic forcing as H(q̂) = H(q̂ac + q̂hyd +
q̂s), which due to linearity of the forcing term on the eigenmode is simply expressed as

H(q̂) = H(q̂ac) + H(q̂hyd) + H(q̂s). (4.10)

Thus, we have a first decomposition of the harmonic forcing H(q̂) from the splitting of the
state variable. However, the term H(q̂ac) is not necessarily a forcing term that uniquely
induces acoustic perturbations. Assume, for simplicity, that the previous forcing term
depends uniquely on the acoustic velocity, H(uac), and it only acts on the momentum
equation, that is, we neglect mass or heat injection. The forcing term must be rotational-
free, i.e., ∇ ×H(uac) = 0, otherwise it will induce vortical perturbations into the flow.
Therefore, H(q̂ac) should be interpreted as a generic forcing term that depends on the
acoustic perturbation. To determine the effect of the forcing, that is, which kind of
response induces, we decompose the forcing operator into H = Hac + Hhyd + Hs as in
section 4.1. Following, this reasoning, we decompose eq. (4.11),(

− iωB|q0
+ DF|q0

)
q̂ac = Hac(q̂ac) + Hac(q̂hyd) + Hac(q̂s),(

− iωB|q0
+ DF|q0

)
q̂hyd = Hhyd(q̂ac) + Hhyd(q̂hyd) + Hhyd(q̂s),(

− iωB|q0
+ DF|q0

)
q̂s = Hs(q̂ac) + Hs(q̂hyd) + Hs(q̂s).

(4.11)

The interpretation of the adjoint q̂† as a measure of the receptivity with respect to a
harmonic forcing allows us to decompose the adjoint in a similar manner to the way we
decomposed the global mode in section 4.1. In this manner, the adjoint variable serves
to project the forcing term onto each of the subspaces with the decomposed adjoint
q̂† = q̂†ac + q̂†hyd + q̂†s . That is, Hac(q̂) = 〈q̂†ac,H(q̂)〉q̂ac, Hhyd(q̂) = 〈q̂†hyd,H(q̂)〉q̂hyd

and Hs(q̂) = 〈q̂†s ,H(q̂)〉q̂s. Then, we can rewrite eq. (4.11),(
− iωB|q0 + DF|q0 + 〈q̂†ac,H(q̂ac)〉+ 〈q̂†ac,H(q̂hyd)〉+ 〈q̂†ac,H(q̂s)〉

)
q̂ac = 0(

− iωB|q0 + DF|q0 + 〈q̂†hyd,H(q̂ac)〉+ 〈q̂†hyd,H(q̂hyd)〉+ 〈q̂†hyd,H(q̂s)〉
)
q̂hyd = 0(

− iωB|q0 + DF|q0 + 〈q̂†s ,H(q̂ac)〉+ 〈q̂†s ,H(q̂hyd)〉+ 〈q̂†s ,H(q̂s)〉
)
q̂s = 0,

(4.12)
which exemplifies the role of the decomposed adjoint variable to project the structural
forcing perturbation onto the corresponding subspace.
An inspection of eq. (4.12) suggests the definition of a non-local structural sensitivity
matrix as

iδωkj = 〈q̂†k, δ(x− x0)C0q̂j〉 6 ||C0||||q̂†k(x0)||||q̂j(x0)|| = ||C0||S(j,k)
s(x0),

S(j,k)
s(x0) = ||q̂†k(x0)||||q̂j(x0)|| with j, k = ac,hyd, s.

(4.13)

The new structural sensitivity provides information about the cross-interaction between
vortical and acoustic components of the flow. In the problem of the impinging jet, the
feedback loop is initiated by the hydrodynamic instability of the shear layer, which
induces an acoustic response. In turn, when acoustic wave impinges on the nozzle lip
promotes back the hydrodynamic instability, continuing the loop. With this novel defin-

ition, S
(hyd,ac)
s identifies the most sensitive region of the flow to vortical perturbations,

inducing an acoustic response. This first region can be named the wavemaker of the
hydrodynamic perturbations exciting an acoustic response, which in the case of the
impinging jet is expected to be located near the impinging wall and possibly near sharp
corners. The second (and third) wavemaker of interest corresponds to the excitation
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of a hydrodynamic response from hydrodynamic ( S
(hyd,hyd)
s ) or acoustic perturbations

(S
(ac,hyd)
s ). Physically, S

(hyd,hyd)
s determines the hydrodynamic wavemaker, which in a

causal reasoning, could be argued to be the region initiating the feedback process. And

S
(ac,hyd)
s determines the most sensitive region of the flow to an acoustic perturbation

inducing a hydrodynamic excitation, that is, the retro-action of the acoustic wave into
the hydrodynamic instability. Additionally, we introduce a further decomposition of the
non-local structural sensitivity map to account only for the forcing of the momentum
equation for a forcing term that depends uniquely on the velocity field, that is,

iδωkj = 〈û†k, δ(x− x0)C0ûj〉 6 ||C0||||û†k(x0)||||ûj(x0)|| = ||C0||S(j,k)
u,s (x0),

S
(j,k)
u,s (x0) = ||û†k(x0)||||ûj(x0)|| with j, k = ac,hyd, s.

(4.14)

We are left with the decomposition of the adjoint eigenmode. Herein, we summarise
the decomposition, a detailed derivation is left to appendix A.2. We propose the following
decomposition for the adjoint velocity field,

û† = û†hyd + û†ac = ∇φ†c +∇× Ψ †,
∆φ†c = ∇ · û† in Ω

∇φ†c · n = û† · n on ∂Ω.

(4.15)

From eq. (4.9), we can interpret the adjoint variable as the sensitivity of the eigen-
value/eigenvector variations with respect to a linear harmonic forcing. In this sense, û†ac

corresponds to the sensitivity to vortical-free eigenvector variations with respect to a
generic linear harmonic forcing in the momentum equation. Similarly, û†hyd should be
understood as the sensitivity to the dilation-free eigenvector variations with respect to a
generic linear harmonic forcing in the momentum equation.
When considering the adjoint variables, we prefer to consider the evolution equation of the
entropy fluctuations ŝ instead of the energy equation, see appendix A for the introduction
of the linearised governing equations in entropy-form. The inclusion of a source term into
the entropy equation, for instance a source of heat release, induces a modification of the
entropy evolution. By definition, we defined hydrodynamic and acoustic modes to be
isentropic (we neglected the effects of viscous dissipation), thus ŝ† projects sources in
the entropy equation to sources of entropic nature, i.e., ŝ† = ŝ†s , a trivial decomposition.
Instead, source terms in the energy equation may induce modifications of the acoustic
and hydrodynamic components of the flow, and its decomposition is more cumbersome.
Finally, the decomposition of the adjoint of the continuity equation, ρ̂†, is determined by
substituting the previously decomposed adjoint and entropy adjoint fields into the linear-
ised adjoint equations, which is left to appendix A.2. Overall, the adjoint is decomposed
as follows,

û† = û†hyd + û†ac = ∇φ†c +∇× Ψ †, from eq. (4.15)

ŝ† = ŝ†s
ρ̂† = ρ̂†ac + ρ̂†hyd + ρ̂†s , from eq. (A 14)

p̂† = p̂†ac =
∇ · û†

γM2
∞

T̂ † = T̂ †ac + T̂ †s = −∇ · û
†

γM2
∞

+
(
ŝ†u0 · ∇s0 −

γ

Pr Re

1

ρ0
∆s0

)
(4.16)

An important property of the adjoint-direct mode bases is the bi-orthogonality. The

pairs of primitive variables
{

0, û, ŝ); (0, û†, ŝ)
}

are bi-orthogonal, but that is no longer
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Figure 7: (a-b) Map S
(hyd,ac)
u,s for the global mode of points (h) and (e) of fig. 3. (c-d)

Map S
(ac,hyd)
u,s for the global mode of points (h) and (e) of fig. 3.

true when considering the complete primitive variable
{

(ρ̂, û, ŝ); (ρ̂†, û†, ŝ)
}

, that is, when

considering the continuity equation or the density variable. The set of bases lacks the bi-
orthogonality property when mass is injected to the system, which implies the existence
of an intrinsic coupling mechanism between the three components of the mode via the
continuity equation. Which, in turn, impedes the decomposition of the sources of mass as
acoustic, hydrodynamic or entropic. In the following, we will restrict ourselves to sources
in the momentum equation, that is, we use eq. (4.14) to analyse the response of the
system to body forces. Figure 7 displays two pairs of structural sensitivity pairs. The

first, S
(hyd,ac)
u,s , is the map measuring the eigenvalue drift due to an acoustic response

induced by a hydrodynamic perturbation. At large Mach numbers (MJ ≈ 0.9), fig. 7

(a) shows that S
(hyd,ac)
u,s is localised near the nozzle lip and within the jet at an axial

location around z ≈ H − D. The region within the jet is found at the spatial location
with the largest production of divergence of the velocity field (cf section 3.2). An acoustic
guided jet mode (cf fig. 6) is then responsible for the closure of the feedback-loop. When
the Mach number is decreased, the production of divergence of velocity is less effective
and the most effective mechanism to close the feedback loop turns out to be a vortex-

sound mechanism, that is, the sensitivity map S
(hyd,ac)
u,s highlights the region where the

linearised Lamb vector is large (cf section 3.2). The feedback loop in this case can be
closed via an acoustic pressure wave released from the region where the Lamb vector
is of large magnitude and propagated as a spherical wave towards the nozzle of the lip
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Figure 8: (a,b) Real and imaginary part of the pressure of mode (b) in fig. 3 at M∞ =
0.2. (c,d) Pressure fluctuations issued from an axisymmetric time-stepping simulation at
M∞ = 0.2 and Re = 2200.

(fig. 8 (a,c)) or from inside the jet (fig. 8 (b,d)). The spatial location of the source of
sound of the latter mechanism is robust with respect to modifications in the Mach or
Reynolds number, i.e., the jet has a preferential location where divergence is created, and
it corresponds to the region within the jet before the jet impinges the wall, cf fig. 4. On the
other hand, the vortical acoustic sources along the region with a large amplitude of the
linearised Lamb vector are highly sensitive to non-linear effects and to variations in the
Reynolds number. The sensitivity to non-linear effects is due to the roll-up of the vortex
sheet and the interaction between vortices emitted at distinct stages of the cycle. This
region of the flow is dominated by vortical effects, and it becomes rapidly chaotic. From
the acoustic standpoint, there exist several acoustic sources at distinct spatial positions
capable to close the loop, which in turn would select a slightly different frequency of
the cycle. That is, in some sense, the lack of temporal coherence of the vortical region
implies a weaker frequency selection criterion. This aspect will be explored in more detail
in section 5.
Figure 7 (c-d) displays the complementary sensitivity map S

(ac,hyd)
u,s , which measures

eigenvalue drift due to a hydrodynamic response induced by an acoustic perturbation.
Not surprisingly, the impingement of acoustic perturbations onto the nozzle lip is the
most effect mechanism to trigger the instability of the shear layer, which is mostly of
vortical nature. Such a mechanism is largely insensitive to Mach number variations.

4.3. A finer insight to the instability core: An identification of the active flow regions

In previous sections, we have employed the structural sensitivity to identify the most
sensitive regions of the flow to cause a drift to the eigenvalue (section 3.2). In addition, our
refined non-local structural sensitivity allowed us to provide a localised stability core for a
non-local instability issued from a feedback loop (section 4.2). In this section, we connect
the qualitative description provided in section 3.2 in terms of physical mechanisms with
a precise description of the active regions of the flow. For this purpose, we adopt the
definition of the endogeneity proposed by Marquet & Lesshafft (2015), which yields a
direct link between structural modifications in the linearised governing equations and
the eigenvalue variations. The endogeneity is introduced as the scalar (complex) field
measuring the eigenvalue drift when considering a localised forcing term with the same
structure as the Jacobian operator DF|q0 , that is, H(q̂) = δ(x − x0)DF|q0 q̂, which
induces the following drift in the eigenvalue,

iδω = 〈q̂†, δ(x− x0)DF|q0 q̂〉 = 〈q̂†(x0), DF|q0 q̂(x0)〉 ≡ E(x0) (4.17)

with the essential property that
∫
Ω
E(x)dx = −iω. This last property is the most

important feature of the endogeneity concept. The scalar field E(x0) measures how local
variations of the flow alter the global characteristics of the instability, such as growth
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Figure 9: (a-b) Endogeneity field for mode (g) in fig. 3 at M∞ = 0.6; (a) Re(E), (b)
Im(E). (c-d) Endogeneity field for mode (b) in fig. 3 M∞ = 0.2; (c) Re(E), (d) Im(E).

rate or frequency.
Figure 9 displays the endogeneity fields for the dominant modes at M∞ = 0.6 and
M∞ = 0.2, respectively, which corresponds to mode (g) and mode (b) of fig. 3. The
imaginary part of the endogeneity for mode (g), displayed in fig. 9 (b), is positive between
the nozzle lip and the region where the module of the divergence of velocity of the mode is
largest. It also corresponds to the spatial location with the largest positive real part of the
endogeneity, shown in fig. 9 (a). Therefore, suggesting that the frequency is selected by
the travelling time that the perturbations take to travel back-and-forth. The imaginary
part endogeneity of mode (b), shown in fig. 9 (d), is composed of two regions. A region
with positive sign along the axial shear layer, and another with larger magnitude and
alternating sign along the radial shear layer. It suggests that the frequency is determined
by the amount of the time that it takes for the perturbations to be convected downstream
towards the wall, but also by the radial position of the acoustical source responsible for
the pressure wave closing the feedback-loop. The real part of the endogeneity, shown
in fig. 9 (a), has a similar structure to the imaginary part. The axial shear layer plays
mostly a passive effect, that is, perturbations are mostly convected downstream towards
the impinging wall, which has a net stabilising effect.
The endogeneity provides a further insight into the mechanisms of the instability. Since∫
Ω
E(x)dx = −iω, one can decompose the governing equations and analyse the effect

that distinct mechanisms have in the instability. For this purpose, we follow a similar
decomposition of the linearised compressible Navier–Stokes to the one laid out by
Meliga et al. (2010) into production (P ) and convective terms, where the latter are
subdivided into advection-convection (CA) and production-convection (CP ) terms. The
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ECA ECP EP

M∞ = 0.6 (g) −0.18 + 0.37i 0.49 + 1.6i −0.27 + 1.4i
M∞ = 0.2 (b) −1.0 + 2.5i 1.17 + 0.79i −0.14 + 0.13i

Table 1: Decomposition of the integral of the endogeneity field,
∫
Ω
E(x)dx, for the

dominant mode at M∞ = 0.6 (g) and at M∞ = 0.2 (b) in fig. 3.

decomposition is as follows,

DF(CA)|q0
q̂ ≡


u0 · ∇ρ̂+ ρ0∇ · û
ρ̂u0 · ∇u0 + ρ0u0 · ∇û
ρ0T0u0 · ∇ŝ+ ρ̂T0u0 · ∇s0 + ρ0T̂u0 · ∇s0

(4.18a)

DF(CP )|q0 q̂ ≡


ρ̂∇ · u0 + û · ∇ρ0

ρ0û · ∇u0

ρ0T0û · ∇s0

(4.18b)

DF(P )|q0 q̂ ≡


0

∇p̂− 1

Re
∇ · τ(û)

− γ(γ − 1)
M2
∞

Re

(
τ(û) : D(u0) + τ(u0) : D(û)

)
− γ

Pr Re
∆T̂

(4.18c)

And we define the endogeneity fields for each of the operators,

ECA(x) ≡ q̂†(x) ·DFCA |q0
q̂(x) (4.19a)

ECP (x) ≡ q̂†(x) ·DFCA |q0
q̂(x) (4.19b)

EP (x) ≡ q̂†(x) ·DFCA |q0 q̂(x) (4.19c)

Table 1 reports the global contribution to the instability of the three operators defined
in eq. (4.18). For the two modes, the convection-advection and production operators
have a global stabilising effect, whereas the convection-production operator plays a
global destabilising role. Their spatial distributions (real part) are shown in fig. 10.
The convection-production term provides the main root of the growth rate. The largest
contribution coming from the base flow shear ρ0û · ∇u0 term, which is active along
the axial shear layer, see fig. 10 (b,e). The convection-advection operator is globally
stabilising, however it plays an active role in advecting the perturbation to the instability
core. Visual inspection of the real part of the ECA field, displayed in fig. 10 (a,d), suggests
that at large Mach numbers the acoustic perturbations are propagated along the shear
layer to the region of largest divergence of the fluctuating velocity field. On the other
hand, at low Mach number, the downstream convection of perturbation counteracts the
local growth and makes the instability more convective. Concerning the production terms,
at large Mach number, the field, displayed in fig. 10 (c), is positive inside the jet from
the nozzle lip to z ≈ H − D. The effect on the growth rate seems to be associated to
the backward propagation of the guided jet mode from the region around z ≈ H − D
to the nozzle-lip. Instead, at low Mach numbers, the dominant production term is the
pressure gradient, which enforces the continuity condition by inducing a perturbation
of the volume flux across the shear layer, cf Marquet & Lesshafft (2015). In the region
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Figure 10: (a-c) Endogeneity field for mode (g) in fig. 3 at M∞ = 0.6; (a) ECA , (b) ECP ,
(c) EP . (e-f) Endogeneity field for mode (b) in fig. 3 M∞ = 0.2; (d) ECA , (e) ECP , (f)
EP .

between the nozzle lip and the impinging wall counteracts the effect of the advection
operator inside the jet, and it favours the convective effect outside the jet.

Finally, motivated by the significant role played by the divergence of the velocity
perturbations in the closure of the feedback-loop at large Mach number, we analyse
the effect on the growth rate of local modifications of the divergence of the momentum
equation (eq. (3.1)). To do so, we take the inner product of the acoustic velocity adjoint
û†ac with the momentum equation, which by integration by parts leads to the following
definition of Ediv,

iδωdiv = 〈−∇φ†, δ(x− x0)DF(mom)|q0 q̂〉
= 〈φ†, δ(x− x0)∇ ·DF(mom)|q0

q̂〉+ B.T. (4.20a)

Ediv ≡ φ†(x)
(
∇ ·DF(mom)|q0

q̂
)
(x), (4.20b)

where it can be shown that the boundary terms (B.T.) are null in the impinging jet
configuration. Following the same approach as in eq. (4.19), we can split we split E(div)

and analyse the effect of the three aforementioned operators on the growth rate. Such
analysis renders possible to study the effect on the growth rate of the physical mechanisms
generating and advecting the divergence of the velocity field. Figure 11 (a) displays the
real part of the E(div). Not surprisingly, the largest positive contribution comes from the
region with the largest divergence of the mode (z ≈ H −D). The convection production
term, displayed in fig. 11 (c), peaks in the region of largest divergence of the baseflow,
which suggests a local conversion of divergence from the baseflow to the perturbations.
The structure of the convection-advection and production terms is more intriguing. The
ECAdiv and EPdiv are almost identical, but of opposite sign, suggesting that the role of the
pressure is to counteract the advection of fluctuating divergence. The shear layer, delimits
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Figure 11: (a) Endogeneity field of the divergence of the momentum equation Ediv. (b)
ECAdiv . (c) ECPdiv . (d) EPdiv.

the region inside and outside the jet. Inside the jet, the production of divergence of the
fluctuating velocity field has a destabilising effect; instead, the advection of divergence
inside the jet renders the instability more convective. The largest growth rate drift by
the production of a divergence is observed to happen along thin radial layers inside the
jet. The spatial distribution of EPdiv composed of cell structures vaguely resembles the
shock-cell structure observed in supersonic jets (Edgington-Mitchell et al. 2018), where
the divergence of the velocity field is produced across the shock cell. Thus, suggesting a
connection between the production of divergence and the instability mechanisms between
large subsonic and supersonic Mach numbers.

4.4. Wave decomposition of the feedback mechanism

Herein, we perform a weakly non-parallel local decomposition of the different waves
supported by the base flow. The configuration under investigation contains in fact
an extended region of quasi-parallel flow, where a simplified analysis can be used to
investigate the local stability property of the jet and the supported waves. Specifically,
in regions where the flow is almost parallel, we perform a multiple-scale analysis: the
disturbance is assumed to have the following asymptotic expansion

q(r,Z) = e−iφ(Z)/ε
∑
n,k

Ck(Z)q
(ε)
n,k(r,Z) εn , (4.21)

where the slow variable Z = εz is kept O(1) in the limit ε → 0. Here the expansion
parameter ε is defined as the ratio of the two main length scales occurring in the problem,

i.e ε =
`?W
`?B

where `?B is the characteristic scale over which the base flow experiences an

O(1) variation, while `?W is the characteristic wavelength of the perturbation. Note that
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the expansion (4.21) depends on both ε and ε = 1/Re owing to the base flow dependence
on the Reynolds number. For our purpose it is not necessary to provide an explicit
relation between the two parameters, but it suffices to assume ε ∼ O(1/Re). The validity
of the previous assumptions can be verified a posteriori.

In eq. (4.21) we consider the primitive variables q̂ = [ρ̂, û, p̂, T̂ ], that is, the vector
containing the components of the disturbance field. The phase φ = −

∫
(α(Z)+δα(Z))dZ

is a slowly-varying function of Z to be determined during the asymptotic procedure. The
slow varying amplitude Ck(Z) should be interpreted as the projection of the global mode
onto the local waves supported by the baseflow, and it is also determined using the
asymptotic procedure. Introducing eq. (4.21) into the linearised system, up to O(ε), and
collecting different powers of ε, we are left with the following series of problems describing
the evolution of the perturbation,
O(ε0) (

− iωB|q0 + DF(α)|q0

)
q

(ε)
0,k(r,Z) = 0 (4.22a)

u0, v0, p0 → 0 as r →∞ (4.22b)

u0 = v0 = 0 at r = 0 (4.22c)

O(ε1)

(
− iωB +DF(α)

)
q

(ε)
1,k(r,Z) = i

d

dα

(
− iωB +DF(α)

)dq
(ε)
0,k

dZ
(4.23a)

u1, v1, p1 → 0 as r →∞ (4.23b)

u1 = v1 = 0 at r = 0. (4.23c)

At O(ε0) the problem is linear, and we determine the pair
(
α(Z),q

(ε)
0,k(r,Z)

)
from the

resolution of the eigenvalue problem eq. (4.22). At the next order, O(ε1), the problem has
a forcing secular term, which needs to be removed by imposing the solvability condition.
The solvability condition provides the weakly-non-parallel correction of the phase, herein
named δα(Z), and defined as

δα =
q
†,(ε)
0,k ·

[
d
dα (−iωB +DF(α))

dq
(ε)
0,k

dZ

]
q
†,(ε)
0,k ·

[
d
dα (−iωB +DF(α))q

(ε)
0,k

] . (4.24)

In the previous expression, q
†,(ε)
0,k is the adjoint solution of the linear problem eq. (4.22).

Finally, we determine the projection of the global mode onto the kth local wave. We use
the local adjoint solution of the kth wave to determine the slowly varying amplitude,

Ck(Z) = q
†,(ε)
0,k ·

[ d
dα

(−iωB +DF(α))q̂(r, z)
]
e−i

∫
αk+δαkdZ , (4.25)

with q̂(r, z) the global mode.
Figure 12 (a) displays the spectrum of the linear spatial stability problem eq. (4.22) for
a baseflow at Re = 800 and M∞ = 0.6 (Mode (g) in fig. 3) at the mid-point between the
nozzle lip and the impinging wall (z = 2.5D). The spectrum displays a set of modes along
the axis, which belong to the continuous branches α+ and α− of free-stream acoustic
modes (Towne et al. 2017). Another set of modes emerge from the right end of the
spectrum for Im(α) > 0, these modes approximate the entropy continuous branch. There
are also four discrete modes. Two duct modes, named D± with the upper script indicating
the direction of propagation. The radial support of these two modes lies inside the jet.
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Figure 12: (a) Spectrum of the linear spatial stability problem eq. (4.22) for a baseflow
at Re = 800 and M∞ = 0.6 (Mode (g) in fig. 3) at the mid-point between the nozzle
lip and the impinging wall (z = 2.5D). (b) Evolution of the projection coefficients C1

(Kelvin-Helmholtz mode) and C2 (Guided-Jet mode) with respect to the Mach number
of the jet (MJ).

There is a guided jet mode, which is found at the left of the free-stream continuous
branch, that is, it possesses a slower phase speed than the free-stream sound speed. The
radial support inside the jet of the pressure component is similar to the duct modes, but
it also possesses a radial support outside the jet. There is also a Kelvin-Helmholtz or
shear layer mode, with a radial support around the shear layer of the baseflow.
The projection coefficient (Ck) of the global mode onto the duct modes is nearly null.
Hereafter, we consider that the global mode is composed only of the shear layer mode
(mode 1) and the guided jet wave mode (mode 2), that is, we truncate the sum in
eq. (4.21) to just two modes. The global mode and the local waves are normalised with
the energy of the fluctuations (Chu 1965). From this assumption, at neutrality, one can
recover the reflection coefficient by considering the ratio between the two waves, here we

define the reflection coefficient as r =
C2(Zm)

C1(Zm)
, with Zm = H/2 the mid-point between

the impinging wall and the nozzle lip. In the central region, the two slowly varying
amplitudes are nearly constant (not shown), which justifies its usage to determine the
local properties of the waves. Figure 12 (b) shows the evolution of the two projection
coefficients of the local waves onto the global mode. The coefficient of the shear layer
mode C1 is nearly constant and equal to unity. Thus, the evolution of C2 with respect to
the Mach number of the jet provides a direct characterisation of the reflection coefficient.
The coefficient of the guided jet mode is O(10−1) at large Mach numbers, it evolves
roughly as M6

J in the interval (MJ,c, 0.9), and then it decreases as M2
J in the interval

(0,MJ,c), with MJ,c ≈ 0.4. The transition in the reflection coefficient dependency with
the Mach number of the jet is another consequence of the modification of the instability
mechanism, from the closure of the feedback loop by propagation of the divergence of
velocity created within the jet to the closure of the loop by vortical acoustic sources
outside the jet near the wall.

5. Nonlinear dynamics of the impinging jet

Herein, we study the dynamics of the normal form involving three global modes, which
is the simplest equation displaying tonal dynamics, that is periodic or quasiperiodic
resonant solutions, and the decoupling of the resonant mode. We also compare the
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numerical results obtained from axisymmetric time-stepping simulations at different M∞
for fixed Re = 2000. In addition, we propose a phenomenological model to account for
the transition to broadband dynamics using a simple model of additive Gaussian noise
on the resonant phase.

5.1. Normal form reduction – Analysis

First, we express eq. (B 20) of section 2.4 in the polar coordinates of the complex
amplitudes zk(τ) = rk(τ)eiφk(τ). This procedure allow us to reduce the dimension of the
normal form from six (three complex amplitudes) to four, three equations for the real
amplitudes and an equation for a resonant phase ψ = (φ3 − φ2)− (φ2 − φ1),

ṙ1 = r1

[
λR1 + νR11r

2
1 + νR12r

2
2 + νR13r

2
3

]
+ r2

2r3

[
cos(ψ)χR1 + sin(ψ)χI1

]
ṙ2 = r2

[
λR2 + νR21r

2
1 + νR22r

2
2 + νR23r

2
3

]
+ r1r2r3

[
cos(ψ)χR2 − sin(ψ)χI2

]
ṙ3 = r3

[
λR3 + νR31r

2
1 + νR32r

2
2 + νR33r

2
3

]
+ r2

2r1

[
cos(ψ)χR3 + sin(ψ)χI3

]
ψ̇ = δω + cos(ψ)

[
− χI3r1r

2
2/r3 + 2χI2r1r3 − χI1r3r

2
2/r1)

]
− sin(ψ)

[
χR3 r1r

2
2/r3 + 2χR2 r1r3 + χR1 r

2
2r3/r1

]
.

(5.1)

Here, we use the notation δω ≡ δωL + δωNL with δωL ≡ [ω1 + ω3 − 2ω2] the
linear frequency mismatch at criticality, and the nonlinear frequency mismatch
δωNL ≡ ∆ωNL2 −∆ωNL1 = [ωNL1 +ωNL3 −2ωNL2 ], where ωNLk = λIk+νIk1r

2
1 +νIk2r

2
2 +νIk3r

2
3

for k = 1, 2, 3. The upper scripts R and I are used to denote the real and imaginary part
of the coefficient.
We analyse the solutions of eq. (5.1) in two steps, first we summarise the results of the
non-resonant case (χ1 = χ2 = χ3 = 0), which was studied more in detail for the case
of the mode interaction in the wake flow behind a rotating sphere (Sierra-Auśın et al.
2022). Subsequently, we discuss, in the presence of resonant coupling, the phase-locked
transition from a resonant quasiperiodic state to a modulated three frequency state with
a small frequency modulation. The new modulating frequency, being proportional to the
imperfections in the frequency quantization (δωNL), is expected to induce a transition to
a chaotic attractor, following the route to chaos suggested by Ruelle–Takens–Newhouse,
when this new frequency is of the order of the frequency difference between two modes,
e.g., ∆ωNL1 .

5.1.1. Stochastic modelling

Ruelle–Takens–Newhouse (Newhouse et al. 1978) state that one may obtain a chaotic
Axiom A attractor by perturbing a three-tori solution, with a given arbitrarily small
perturbation. However, it fails to provide the precise route to chaos, which may occur
following a torus breakdown (Tanaka 2005), which occurs because of the loss of smooth-
ness of the two or three tori attractors (Marques et al. 2001). In order to account for the
loss of smoothness of the system, we replace

δωNL 7→ δωNL(1 + dW ),

with dW a differential Wiener process and δωNL determined from the deterministic
normal form. This phenomenological modelling is based on the fact that the sources of
sound responsible for the closure of the feedback become less coherent with decreasing
Mach number (see section 4). Such a modelling is faithful with the deterministic normal
form eq. (5.1) in the mean sense, that is, E

(
δωNL(1 + dW )

)
= δωNL. At low subsonic

Mach number, the increase of δωNL is caused by the elongated nature of the wavemaker,
which enables the existence of sources of vortex sound at distinct spatial locations. Each
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Name Representative Frequencies
TS (Trivial state) (0, 0, 0, n.d.) 0

PW (Periodic Wave mode) (ra, 0, 0,n.d.) 1
MW (Mixed Wave mode) (ra, rb, 0,n.d.) 2

3FW (Three Frequency Wave mode) (ra, rb, rc, n.d.) 3
MrW (Mixed resonant Wave mode) (ra, rb, rc, ψd) 2

Table 2: Nomenclature of fixed point solutions of the system eq. (5.1). The MW and the
3FW correspond to the case of non-resonant coupling χ1 = χ2 = χ3 = 0.

of these sources it is associated with a distinct fundamental frequency ∆ω, which is
inversely proportional to the convective time it takes for the hydrodynamic perturbations
to reach the source of vortex sound at the wavemaker and to the acoustic time it
takes for the perturbation to reach back to the lip of the nozzle. Therefore, providing
a phenomenological interpretation to the increase of the modulation frequency with
a decreasing Mach number. Thus, the transition to a broadband spectrum can be
interpreted as the consequence of the loss of coherence of the feedback process and
the fact that the levels of the sound acoustic pressure decrease with decreasing Mach
number. The latter effect is attributed to the fact that with decreasing Mach number,
the production of the divergence of velocity field is reduced, which occurs mostly within
the jet and near the wall. Additionally, the propagation of the guided jet wave becomes
less effective with decreasing Mach number, because of the increase of its wavelength.
This phenomenon can be appreciated in fig. 7, where the structural sensitivity to the
acoustic response of the system from hydrodynamic perturbations is displaced from a
spatial location within the jet to an elongated region near the wall outside the jet.

5.1.2. Properties of the deterministic normal form

In the absence of a coupling between the real amplitudes rk and the resonant phase
ψ, i.e. χ1 = χ2 = χ3 = 0, we have that ψ = (ωNL2 − ωNL1 )t − (ωNL3 − ωNL2 )t, which is
generally non-zero. In this case, eq. (5.1) is simplified to

ṙ` = r`

[
ΛR` + VR`kr2

k

]
, k, ` = 1, 2, 3,

φ̇` = ΛI` + VI`kr2
k, k, ` = 1, 2, 3,

(5.2)

where Λ = ΛR + ΛI ≡ (λ1, λ2, λ3)T and the matrix V = VR + iVI is

V ≡

ν11 ν12 ν13

ν21 ν22 ν23

ν31 ν32 ν33

 (5.3)

To ease the presentation of the fixed point solutions of eq. (5.2), let us introduce the
inverse of the linear operator V, which can be written as

V−1 =
1

detV

detV11 detV21 detV31

detV12 detV22 detV32

detV13 detV23 detV33

 , (5.4)

where detVk` denotes the minor of the matrix V, obtained by eliminating the line k and
the column `.

This equation has four types of solutions, listed in table 2 with their respective
nomenclature and number of independent frequencies. The definition of the solutions
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Name of solutions Definition Eigenvalues

PWi r
(PW )
i =

√
−λ

R
i

νRii
−λRi ,

(for i = 1, 2, 3) λRj − νRji
λRi
νRii

, for j 6= i

MWij , (i, j = 1, 2, 3) r
(MWij)

i =

√
λRj ν

R
ij − λRi νRjj

det(Vkk)

νRii r
2
i + νRjjr

2
j

2
±
√(

νRii r
2
i − νRjjr2j

)2
/4 + νRijν

R
jir

2
i r

2
j

(j 6= i, k 6= i, k 6= j) r
(MWij)

j =

√
λRi ν

R
ji − λRj νRii

det(Vkk)

1

det(VRkk)

[
λRk det(VRkk) + λRi det(VRik) + λRj det(VRjk)

]
3FW123 (r21, r

2
2, r

2
3)T = −

(
VR
)−1

ΛR Eigs of DfR

Table 3: Defining equations and eigenvalues of the solutions of the polar third order
normal form eq. (5.1) in the case of non-resonant coupling χ1 = χ2 = χ3 = 0. DfR

denotes the Jacobian matrix of the polar amplitudes of eq. (5.2).

and their linear stability is enumerated in table 3. The two solutions of interest for us
are the PW and the MW, which are representative of tonal dynamics.
Now, we turn our attention to the resonant case. In particular, we focus on the dynamics
of a resonant MW state, which is a quasiperiodic state and the amplitudes r1 and r2

determined as in table 3, with a constant resonant amplitude r3 and locked phase ψ. This
new state, referred to as Mixed resonant Wave (MrW) still possesses two incommensurate
frequencies, with the third mode resonant to the other two. A definition of this resonant
solution may be found in table 4. The MrW branch may display a Hopf bifurcation, which,
in the case of r3 � r1, r2, can be analysed by simply studying the two-by-two sub-block of
the Jacobian matrix of eq. (5.1). The MrW12 branch loses stability in a Hopf bifurcation
with a modulation frequency ω′ ∝ δωNL, see the last column of table 4. It occurs when

the attracting eigenvalue in the r3-direction is smaller than −σMW12 6
χI3
χR3

δω. The

right-hand side of the inequality can be interpreted as the effective frequency mismatch

δωeff ≡ χI3
χR3
δω induced by the coupling coefficients. The Modulated Mixed drift Wave

(MMdW) is susceptible to be observed as a chaotic attractor when studying the Navier–
Stokes equations. However, it is possible to observe this new three-frequency state as a
non-chaotic attractor when the modulation frequency is much smaller than the other two
frequencies ω′ � ω1, ω2, which occurs if δω � 1. Similarly, in the actual dynamics of the
Navier–Stokes equation, a chaotic attractor is likely to shadow the MMdW state, which
is expected to occur when the third amplitude (r3) is sufficiently large. Therefore, in this
sense, we cannot provide a sharp cut-off for the transition of broadband (chaotic) - tonal
dynamics, but we provide a qualitative description of the transition in the simplest case
with resonance between the modes of the spectrum. In the following sections, we provide
a comparison of the deterministic and stochastic normal forms with direct numerical
simulations of the axisymmetric impinging jet.
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Name of solutions Definition Stability

MrW12 tan(ψ) = −χ
R
3 δω + σMW12χ

I
3

χI3δω + σMW12χ
R
3

2χR3
(
δωχI3 + χR3 σMW12

)
(χR3 )2 − (χI3)2

> 0

r3 =
(χR3 )2−(χI3)

2

χR3 δω+σMW12
χI3
r22r1 sin(ψ) ω′ = | δω

χR3

(
(χR3 )2 − (χI3)2

)1/2
|

Table 4: Defining equations and eigenvalues of the Mixed resonant wave of eq. (5.1) in the
case of resonant coupling. The amplitudes r1 and r2 are defined in table 3, since they are

the same as for the MW12. The eigenvalue σMW12
= 1

det(VR33)

[
λR3 det(VR33)+λR1 det(VR13)+

λR2 det(VR23)
]

is the eigenvalue of the MW in the direction of r3. ω′ is defined criticality,

that is, when σMW12 =
χI3
χR3
δω.

5.2. Results

5.2.1. Small subsonic Mach number – An example of broadband noise

At low Mach numbers, a broadband spectrum characterizes the dynamical attractor
(obtained from axisymmetric numerical simulations, section 2.3), which is displayed in
fig. 13 (b) with red, blue and black solid lines for pressure probes at an axial location
z = 0 and a radial position r = 1D, r = 2D and r = 4D, respectively. This type
of dynamics is modelled by a periodic solution (MMdM) of the normal form eq. (5.1),
which is a three-tori solution in the original coordinates of the ansatz eq. (2.11). The
MMdM solution emerges almost directly from of the PW2 branch (fig. 13 (a)), that is, the
MrW13 is unstable (not shown). The Modulated Mixed drift Wave possesses a modulation
frequency ω′ ≈ ∆ω, that is, the modulation frequency has a similar magnitude to the
frequency difference between the other two dominant frequencies. In that scenario, the
original dynamics of the Navier–Stokes equations are expected to be chaotic with a
broadband spectrum. However, fig. 13 shows a tonal spectrum (yellow line), which has
been obtained from the deterministic normal form. Such a feature is characteristic of
this particular type of normal form, and it is a pathological property of the truncation.
Instead, when considering the stochastic model with δω ≈ 0.1, one obtains a spectrum
(green line) which offers a considerably better comparison with respect to the data of
the axisymmetric simulation. In this case, the spectrum displays a wide peak of small
magnitude around f1 and f2, and a broadband spectrum with a similar slope to the
numerical results (red line). Thought the matching is not perfect, the ratio between
the peak and the broadband levels is slightly larger in the deterministic model, which
suggests a higher degree of stochasticity of the axisymmetric numerical simulation. The
difference may be explained from the fact that the axisymmetric numerical simulations
allow for a vortical feedback, vortices emitted by the roll-up of the radial shear layer near
the wall and outside the jet are propagated towards the lip. These vortices are produced
aperiodically in a chaotic region of the flow, thus reducing the coherence of the spectrum
when they induce a hydrodynamic instability near the lip of the nozzle. Such a feature
is strongly nonlinear, and it is not accounted by the normal form. A possible correction
to the stochastic model would consist in the inclusion of a diffusion coefficient

√
Deff in

δω(1+
√
DeffdW ), and thus determine the effective diffusion from the fitting of numerical

or experimental data (Callaham et al. 2021).
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Figure 13: (a) Bifurcation diagram at M∞ = 0.3 with respect to the Reynolds number
with |r| =

√
r2
1 + r2

2 + r2
3. Solid lines indicate stable attractors, dashed lines indicate

unstable fixed points of eq. (5.1). (b) Sound pressure levels at Re = 2000. Probes of
instantaneous pressure fluctuations at the axial location z = 0 and radial positions
r = 1D (red - axisymmetric time-stepping, yellow - deterministic normal form, green
stochastic normal form with δω = 0.1), r = 2D (black - axisymmetric time-stepping) and
r = 4D (dark blue - axisymmetric time-stepping). The vertical dashed lines highlight the
frequencies of the peaks obtained with the axisymmetric time-stepping simulation.

5.2.2. Large subsonic Mach number – An example of weakly resonant tones

At large Mach numbers, the dynamical attractor is characterized by a tonal spectrum
with large peaks at discrete frequencies. This type of dynamics is modelled by a fixed-
point (MrW) or a periodic solution (MMdW) of the normal form eq. (5.1). Figure 14
(a) shows the bifurcation diagram obtained with the deterministic normal form. The
mode-switching point reported in section 3 was located at MA

∞ ≈ 0.49. For larger values
of M∞ the PW3 branch emerges from the primary bifurcation as a stable solution, and
the PW2 branch subsequently bifurcates. The PW2 branch is unstable near the onset of
instability, and it is restabilised following a subcritical bifurcation of the MrW23 branch.
Figure 14 (a) shows the existence of regions with multiple stable attractors (PW2 and
PW3, and MW13 and MMdW), a feature that was also observed in the experimental
campaign of Nosseir & Ho (1982) at large Mach numbers of the jet. Specifically, the
MMdW coexists with a stable non-resonant quasiperiodic solution (MW13). The MW13

state becomes unstable via a symmetry breaking bifurcation to a MrW13. The MrW13

branch experiences a saddle-node bifurcation and it folds onto itself to finally reconnect
to the MW13 branch again. Because of the saddle-node bifurcation in the MrW13 branch,
after the second re-connection, the MW13 branch continues to be unstable. In addition,
even when the MW13 branch is stable, its basin of attraction of is considerably smaller
than the one of the MMdW state, and it shrinks with increasing Reynolds number.
That is, in the interval of coexistence of the two branches, most of initial conditions are
attracted to the MMdW state. In the following, we simply consider the case at Re = 2000
of the MMdW state. In this case, the modulation frequency of the Modulated Mixed
resonant Wave is smaller than the frequency difference between the modes (ω′ � ∆ω).
In that scenario, the spectrum of the Navier–Stokes equations is expected to be weakly
tonal with wide and large magnitude peaks. In this case, the deterministic normal form
offers a good qualitative description of the spectrum, it is able to identify the main
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Figure 14: (a) Bifurcation diagram at M∞ = 0.5 with respect to the Reynolds number
with |r| =

√
r2
1 + r2

2 + r2
3. Solid lines indicate stable attractors, dashed lines indicate

unstable fixed points of eq. (5.1). (b) Sound pressure levels at Re = 2000. Probes of
instantaneous pressure fluctuations at the axial location z = 0 and radial positions
r = 1D (red - axisymmetric time-stepping, yellow - deterministic normal form, green
stochastic normal form with δω ≈ 0.04), r = 2D (black - axisymmetric time-stepping)
and r = 4D (dark blue - axisymmetric time-stepping). The vertical dashed lines highlight
the frequencies of the peaks obtained with the axisymmetric time-stepping simulation.

frequency peaks and the frequency modulation f ′. The frequency modulation obtained
from numerical simulations is f ′DNS ≈ 0.05, while the frequency modulation from the
normal form is f ′ ≈ 0.04. Additionally, as in the broadband case, we compare in fig. 14 the
results of the axisymmetric numerical simulation (red line) with those of the deterministic
normal form (yellow line) and the stochastic model (green line). It shows a reasonable
comparison, though the sound pressure levels are underestimated, between the spectrum
of the Navier–Stokes equations and the one from the stochastic model. However, since the
model is weakly nonlinear, it fails to predict the existence of a peak at f2/2, which occurs
because of a secondary instability of the radial shear layer. Inspection of the numerical
results suggests that such a frequency peak occurs because of a vortex-pairing instability
of the radial shear layer (Shaabani-Ardali et al. 2019).

6. Discussion & Conclusion

The dynamics of the hydrodynamic-acoustic feedback instability of a rounded laminar
subsonic impinging jet configuration has been analysed. First, it has been shown the
existence for every Mach number of a family of unstable modes, which are characterised
by their axial wavenumber. It has been discussed the nature of the instability in terms of
the structural sensitivity and later by the complex-valued endogeneity map. It has been
argued that the guided jet wave is responsible for the closure of the feedback mechanism
initiated by the shear layer instability. The guided jet mode is the consequence of the
intense production of divergence of the velocity perturbations at an axial distance around
a diameter from the wall, which has been identified using a novel decomposed structural
sensitivity, suited to identify these type of non-local acoustic-hydrodynamic feedbacks.
Such an instability mechanism is responsible for the strong emission of tonal noise. First
it is robust, the mechanism is weakly sensitive to external perturbations, which could
be due to inflow perturbations or the interaction with vortices issued from the region
near the wall and initiated by the roll-up of the radial vortex sheet. Second, the emission
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of sound is strong, a feature that is observed when considering the relative amplitude
between vortical and acoustic pressure of the linear mode. So, in this sense, linear stability
is relevant to determine the possibility of strong sound emissions. On the other hand, at
low Mach numbers, the main source of sound comes from vortex-sound. The structural
sensitivy peaks along the radial vortex-sheet, which is the region with the largest module
of the linearised Lamb vector. The difference in the mechanisms have several consequences
in the non-linear dynamics. The dynamics of the vorticity field in a region around the
radial vortex-sheet becomes rapidly chaotic with small variations of the Reynolds number
from the primary Hopf bifurcation. Physically, the low temporal coherence of the vortical
sources of sound, which are responsible for the emission of the pressure wave closing the
feedback-loop, are at the origin of the measured broadband spectrum of the acoustic
pressure field. We provide a reduced model, issued from a weakly non-linear analysis, to
account for the qualitative changes in dynamics between low and large subsonic Mach
numbers. The deterministic model mimics some features of the actual dynamics, such
as the frequency-locking of a third tone with the other two or the appearance of a
third slow frequency. Nevertheless, due to the truncation to third order, the model does
not display chaotic dynamics. Based on a phenomenological reasoning, we propose a
stochastic model which accounts for the low temporal coherence of the sources of sound
at low Mach number, which in turn induce a frequency mismatch (δω). Such a model is
able to reasonably reproduce the sound pressure level spectrums measured from time-
stepping simulations. There exist several appealing perspectives. To mention some, it
might be of interest to determine from experimental turbulent rounded impinging jets
the coefficients of the normal form with data-assimilation techniques, cf Cenedese et al.
(2022). In addition, the non-local structural sensitivity map may help to investigate
the fine details of the instability mechanism in many other configurations where the
instability is issued of a non-local feedback, such as airfoil noise, screech, or cavity flows.

Appendix A. Entropy formulation – Decomposition of the adjoint

In this section, we detail the derivation of the decomposition of the adjoint variable
q̂† into acoustic, vortical and entropic components. Before, proceeding to the detailed
description of the adjoint equations, we introduce the linearised compressible Navier–
Stokes equations in the primitive variables [ρ̂, û, ŝ, T̂ , p̂]T . The motivation to introduce
this set of equations is because they have a simpler decomposition. The linearised
equations are(

− iωB|q0
+ DF|q0

)
q̂ = 0, with B|q0

= diag(1, ρ0I, ρ0T0, 0, 0), (A 1)

DF|q0 q̂ =



u0 · ∇ρ̂+ ρ̂∇ · u0 + û · ∇ρ0 + ρ0∇ · û

ρ̂u0 · ∇u0 + ρ0u0 · ∇û + ρ0û · ∇u0 +∇p̂− 1

Re
∇ · τ(û)

− γ(γ − 1)
M2
∞

Re

(
τ(û) : D(u0) + τ(u0) : D(û)

)
− γ

Pr Re
∆T̂

+ ρ0T0u0 · ∇ŝ+ ρ0T0û · ∇s0 + ρ̂T0u0 · ∇s0 + ρ0T̂u0 · ∇s0

ρ0T0ŝ+ (γ − 1)T0ρ̂− ρ0T̂

− ρ0T̂ − ρ̂T0 + γM2
∞p̂

(A 2a)

(A 2b)

(A 2c)

(A 2d)

(A 2e)

And their adjoint counterpart are
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(
iωB|q0

+ DF†|q0

)
q̂† = 0, with B|q0

= diag(1, ρ0I, ρ0T0, 0, 0), (A 3)

DF†|q0 q̂
† =



− u0 · ∇ρ̂† +
(
u0 · ∇u0

)
· û†

+ (u0 · ∇s0)ŝ† + T0

(
(γ − 1)T̂ † − p̂†

)
− ρ0u0 · ∇û† + ρ0û

† · (∇u0)T − 1

Re
∇ · τ(û†)

− ρ0∇ρ̂† + 2γ(γ − 1)
M2
∞

Re
∇ · (ŝ†τ(u0)) + ρ0T0ŝ

†∇s0

− ρ0T0u0 · ∇ŝ† + ρ0T0T̂
†

ρ0T0ŝ
†u0 · ∇s0 −

γ

Pr Re
∇2ŝ† − ρ0p̂

† − ρ0T̂
†

γM2
∞p̂
† −∇ · û†

(A 4a)

(A 4b)

(A 4c)

(A 4d)

(A 4e)

A.1. Decomposition of the global mode

We first detail how we decompose the global mode q̂ into: acoustic, hydrodynamic and
entropic components.
We adopt a Helmholtz-Hodge decomposition (Schoder et al. 2020) of the perturbation
velocity field into acoustic (potential) and hydrodynamic (solenoidal)

û = ûac + ûhyd = ∇φc +∇× Ψ (A 5)

applying divergence to eq. (4.1), the potential φc is determined from the following Poisson
equation

∆φc = ∇ · û in Ω
∇φc · n = û · n on ∂Ω.

(A 6)

The hydrodynamic component of the velocity is subsequently determined by subtracting
ûhyd = û− ûac = û−∇φc. Note that,the uniqueness of the Helmholtz decomposition is
subjected to the L2-orthogonality condition, in our case satisfied by the suitable boundary
condition of eq. (A 6), and the decay of the velocity field at the far-field (Schoder et al.
2020).
The pressure decomposition is derived from the linearised momentum equation. Consider-
ing an isenstropic relationship between density and pressure fluctuations, i.e, ρ̂T0 = M2

∞p̂,
and taking divergence of the linearised momentum equation, we end up with the following
elliptic equation for the pressure,

− 1

ρ0
∆p̂+

∇ρ0 · ∇p̂
ρ2

0

−∇ ·
(
M2

∞
T0

(
u0 · ∇u0

) p̂
ρ0

)
= ∇ ·

(
u0 · ∇û

)
+∇ ·

(
û · ∇u0

)
+iω∇ · û− 1

Re
∇ ·
(
∇ · τ(û)

)
.

(A 7)
Decomposing the velocity field into acoustic and hydrodynamic and leaving the viscous
dissipation term to the entropic component, we end up with the following decomposition
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of the pressure,

− 1

ρ0
∆p̂ac +

∇ρ0 · ∇p̂ac

ρ2
0

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂ac

ρ0

)
= iω∇ · ûac +∇ ·

(
u0 · ∇ûac

)
+∇ ·

(
ûac · ∇u0

)
(A 8a)

− 1

ρ0
∆p̂hyd +

∇ρ0 · ∇p̂hyd

ρ2
0

−∇ ·
(M2

∞
T0

(
u0 · ∇u0

) p̂hyd

ρ0

)
= ∇ ·

(
u0 · ∇ûhyd

)
+∇ ·

(
ûhyd · ∇u0

)
(A 8b)

p̂s = p̂− p̂hyd − p̂ac. (A 8c)

A.2. Decomposition of the adjoint mode

Before introducing the decomposition of the adjoint global mode, we first review the
significance of the decomposition in a simpler example, where we only consider the
momentum equation. We introduce a harmonic forcing Hu to the momentum equation,

−iωρ0û + ρ̂u0 · ∇u0 + ρ0u0 · ∇û + ρ0u0 · ∇û−∇p̂+
1

Re
∇ · τ(û) = ρ0Hu. (A 9)

The introduction of the forcing term Hu induces a response of the velocity field û and the
pressure field p̂. In the presence of viscous dissipation, the introduction of the momentum
source term always excites an entropic response. However, such a component is expected
to become of lesser importance at larger Reynolds numbers and to be localized near wall
boundaries and in regions of large magnitudes of the shear tensor. For such a reason,
we propose the decomposition of the velocity adjoint into hydrodynamical and acoustic
components, but having in mind that this is not a perfect decomposition since they
should possess a possibly small entropic part. The excitation of the dilation of velocity
is evaluated by taking the divergence of the linearised momentum equation eq. (A 9),

−iω∇ · û +
ρ̂

%0
∇ · ∇(u0u0) +∇

( ρ̂
%0

)
· ∇(u0u0)

+∇ · ∇(u0û)−∆
( p̂
ρ0

)
+

1

Re
∇ ·
(
∇ · τ(û)

)
= ∇ ·Hu.

(A 10)

Equation (A 10) implies that divergence free forcing terms, i.e., ∇ · Hu = 0, do
not excite the acoustic component of the global mode. Furthermore, neglecting viscous
dissipation effects, this type of forcing term only excites the hydrodynamic component
of the global mode. A similar reasoning leads to the conclusion that, when we neglect
viscous dissipation effects, a rotational-free forcing, i.e., ∇ ×Hu = 0, only excites the
acoustic component of the perturbation.
Now, interpreting the adjoint global mode as the projector onto the corresponding
component of the global mode, we propose a Helmholtz-Hodge decomposition of the
adjoint velocity field,

û† = û†hyd + û†ac = ∇φ†c +∇× Ψ †,
∆φ†c = ∇ · û† in Ω

∇φ†c · n = û† · n on ∂Ω.

(A 11)

This decomposition is bi-orthogonal when considering only direct and adjoint
velocity fields, that is, 〈û†hyd, ρ0ûac〉 = 〈û†ac, ρ0ûhyd〉 = 0 with 〈û†ac, ρ0ûac〉 6= 0 and

〈û†hyd, ρ0ûhyd〉 6= 0. Therefore, the momentum forcing can be expanded as

ρ0Hu = 〈û†hyd, ρ0Hu〉ûhyd + 〈û†ac, ρ0Hu〉ûac = ρ0Hhyd,u + ρ0Hac,u. (A 12)
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The next step in the decomposition consists in the decomposition of the entropy
adjoint ŝ†. Here below, we justify that ŝ† = ŝ†s , that is, that a forcing term to the
entropy equation only excites the entropy component of the global mode. It derives
from the fact that we have defined the acoustic and hydrodynamic components to be
entropy-free. Evidently, since ŝ†hyd = ŝ†ac = 0, the decomposition is bi-orthogonal in the
entropy variable.

From these considerations, we can derive the remaining components of adjoint. Sub-
stituiting the gradient of the density adjoint ∇ρ̂† from eq. (A 4a) into eq. (A 4b) we derive
an explicit equation for ρ̂†

−iωρ̂† = −iωu0 · û† − u0 ·
(
u0 · ∇û†

)
+ u0 ·

(
û† · (∇u0)T

)
− û† ·

(
u0 · ∇u0

)
+ 1

Reu0 · ∇ · τ û† − 2γ(γ − 1)
M2

∞
Re

1
ρ0
u0 · ∇ · ŝ†τ(u0)

−T0ŝ
†u0 · ∇s0 + (γ − 1)T0T̂

† − T0p̂
†

(A 13)

Substituting ŝ† = 0, û† = û†ac (or û† = û†hyd), and T̂ † = −p̂†, a relationship that is

obtained from eq. (A 4) by considering ŝ† = 0, we are led to the following decomposition
of ρ̂†

−iωρ̂†ac = −iωu0 · û†ac − u0 ·
(
u0 · ∇û†ac

)
+ u0 ·

(
û†ac · (∇u0)T

)
−û†ac ·

(
u0 · ∇u0

)
− γT0p̂

†

−iωρ̂†hyd = −iωu0 · û†hyd − u0 ·
(
u0 · ∇û†hyd

)
+ u0 ·

(
û†hyd · (∇u0)T

) (A 14)

And the entropic component is determined as ρ̂†s = ρ̂†− ρ̂†ac− ρ̂
†
hyd. The decomposition of

ρ̂† is not generally bi-orthogonal with respect to the density decomposition of the global
mode.

Overall, the adjoint is decomposed as follows,

û† = û†hyd + û†ac = ∇φ†c +∇× Ψ †, from eq. (A 11)

ŝ† = ŝ†s
ρ̂† = ρ̂†ac + ρ̂†hyd + ρ̂†s

p̂† = p̂†ac =
∇ · û†

γM2
∞

T̂ † = T̂ †ac + T̂ †s = −∇ · û
†

γM2
∞

+
(
ŝ†u0 · ∇s0 −

γ

Pr Re

1

ρ0
∆s0

)
(A 15)

Appendix B. Normal form reduction

Here, we discuss the computation of the coefficients of the normal form eq. (B 20).
These are computed following a multiple scales expansion of the solution q of eq. (2.1).
We rewrite the governing equations as follows,

B
∂q

∂t
= F(q,η) ≡ −

(
c + Lq +

1

2
N2(q,q) +

1

6
N3(q,q,q) + G1(q,η) +

1

2
G2(q,q,η)

)
,

(B 1)
where c = [0,0, 0, 1]T , B is the mass matrix, L the linear operator on the state

variable q, and G1 and G2 the linear and quadratic operators in the state variable
q and parameters η. These operators are defined as
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B =


1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

 , L =


0 0 0 0
0 0 0 ∇
0 0 0 0
0 0 0 0

 ,

G1(q,η) =


0 0 0 0
0 − 1

Re∇ · τ(·) 0 0

0 0 − γ

Pr Re∆ 0

0 0 0 γM2
∞

 ,

G2(q1,q1,η) =


0
0

−(γ − 1)γM2
∞/Re

(
τ(u1) : D(u2) + τ(u2) : D(u1)

)
0

 ,

(B 2)

while the quadratic nonlinear operator on the state variable is defined as

N2(q1,q2) =


u1 · ∇ρ2 + u2 · ∇ρ1 + ρ1∇ · u2 + ρ2∇ · u1

0
0

−
(
ρ1T2 + ρ2T1

)
 , (B 3)

and cubic nonlinear operator on the state variable is

N3(q1,q2,q3) =



0∑
i,j,k

ρiuj · ∇uk∑
i,j,k

(γ − 1)ρiTj∇ · uk + ρiuj · ∇Tk

0

 , (B 4)

The expansion considers a two scale development of the original time t 7→ t + ε2τ , here
ε is the order of magnitude of the flow disturbances, assumed small ε � 1. Herein, we
consider the small parameters εM2 and εν , which are a function of the Mach number and
Reynolds numbers at the far-field,

ε2
M2 =

(
M2
∞,c −M2

∞
)
∼ ε2 and ε2

ν =
(
νc − ν

)
=
(
Re−1

c − Re−1
)
∼ ε2.

With this compact notation we can provide an explicit form of the linearized Navier–
Stokes equations with respect to baseflow qb,

DF|qb(q,η) ≡ Lq + N2(qb,q) +
1

2
N3(qb,qb,q) + G1(q,η) + G2(qb,q,η). (B 5)

The technique decomposes time into a fast timescale t of the phase associated to the self-
sustained instabilities and a slow timescale related to the evolution of the amplitudes
zi(τ), introduced in eq. (2.11), for i = 1, 2, 3. The ansatz of the expansion is as follows

q(t, τ) = qb + εq(ε)(t, τ) + ε2q(ε2)(t, τ) + ε3q(ε3)(t, τ) +O(ε4) (B 6)

In such a case, the vector is expanded as

q(ε)(t, τ) =
∑N
k=1

(
zk(τ)q̂(zk)(r, z)e

iωkt + c.c.
)

(B 7)
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Note that the expansion of the LHS of eq. (2.1) up to third order is as follows

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+ B

∂q(ε)

∂τ

]
+O(ε4), (B 8)

and the RHS respectively,

F(q,η) = F(0) + εF(ε) + ε2F(ε2) + ε3F(ε3) +O(ε4). (B 9)

In the following, in order to improve readability, we define the set of vectors of linear,
quadratic, and secular interactions.

Z ≡ {z1, z2, z3}, Z = {z1, z2, z3}
Z2 ≡ Z⊗ Z⊕ Z⊗ Z = {z2

1 , z
2
2 , z

2
3 , z1z2, z1z3, z2z3, |z1|2, |z2|2, |z3|2,

z1z2, z1z3, z2z3}
ZS ≡ {z1, z2, z3, z1|z1|2, z1|z2|2, z1|z3|2, z2|z1|2, z2|z2|2, z2|z3|2,

z3|z1|2, z3|z2|2, z3|z3|2, z1z2z3, z
2
2z3, z

2
2z1}

(B 10)

where only unique elements are kept. We denote by znα any element of the family Zn,
with n ∈ N∗.

B.1. Zeroth order

The zeroth order corresponds to the steady-state problem of the governing equations
evaluated at the parameter vector η = (M∞,Re)T ,

0 = F(qb,η) (B 11)

whose solution is the steady state qb.

B.2. First order

The first order corresponds to the resolution of a homogeneous linear system, i.e., a
generalized eigenvalue problem evaluated. The eigenpairs

[
iω`, q̂(z`)

]
are determined as

the solutions of the following shifted (Meliga et al. 2009) eigenvalue problem

J̃ω` q̂(z`) =
(

iω`B− ε2S−DF|qb(q,η)
)
q̂(z`) (B 12)

where we have introduced the shift operator ε2S, which is defined in such a way that
J̃ω` q̂(z`) = 0 at η and Im(ω`) = 0, and Sq = 0 for any other vector field q distinct
to the eigenmodes. The B−norm of the eigenmodes q̂(z`)(r, z) is scaled to unity, i.e.,
〈q̂, q̂〉B = 1.
Analogously, the adjoint eigenmodes are determined from the resolution of eq. (2.7) and
normalised with respect to the direct mode so the inner product is equal to the unity,
i.e, 〈q̂†, q̂〉B = 1

B.3. Second order

The second order expansion term q(ε2)(t, τ) is determined by the resolution of a set of
linear systems, where the forcing terms are evaluated from first and zeroth order terms.
The expansion in terms of amplitudes z`(τ) of q(ε2)(t, τ) is assessed by collecting the
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second order forcing terms. Non-linear second order terms in ε are

F(ε2) ≡
3∑

j,k=1

1

2

(
zjzkN2(q̂(zj), q̂(zk))e

−i(ωj+ωk)t + c.c.
)

+

3∑
j,k=1

1

2

(
zjzkN2(q̂(zj), q̂(zk))e

−i(ωj−ωk)t + c.c.
)

+

2∑
`=1

η`G1(qb, e`),

(B 13)

where e` is an element of the orthonormal basis of R2. Then the second order expansion
of the flow variable is carried out, so it matches the terms of the forcing

q(ε2) ≡
∑

z2
α∈Z2

(
z2
αq̂(z2

α)e
−iωαt + c.c.

)
+

2∑
`=1

η`q
(η`)
b , (B 14)

The terms q̂(z2j ) are harmonics of the flow, q̂(zjzk) with j 6= k are coupling terms, q̂(|zj |2)

are harmonic base flow modification terms and q
(η`)
b are base flow corrections due to a

modification of the parameter η` from the critical point. Then the second order terms
are determined from the resolution of the following (non-singular) systems of equations

J(ωj+ωk)q̂(zjzk) = F̂(zjzk), (B 15)

where F̂(zjzk) is the term of eq. (B 13) proportional to zjzk and

J(0,0)Q
(η`)
b = G(Qb, e`). (B 16)

B.4. Third order

At third order, we proceed as for previous orders, first the forcing term is expanded

F(ε3)

∑
zα∈Z,z2

β∈Z2

zαz
2
β

[
N(q̂(z2

β), q̂(zα))
]
ei(ωα+ωβ)t

∑
zα∈Z,zβ∈Z,zγ∈Z

zαzβzγ
[
N3(q̂(zγ), q̂(zβ), q̂(zα))

]
ei(ωα+ωβ+ωγ)t

+

2∑
j=1

2∑
`=1

[
zjη`

[
N2(q̂(zj),Q

(η`)
b )

]
e−iωjt + c.c.

]
+

2∑
j=1

2∑
`=1

[
zjη`G1(q̂(zj), e`)e

−iωjt + c.c.
]

+

3∑
j=1

zjSq̂(zj),

(B 17)

Followed, by the expansion of the third-order secular terms q(ε3)(t, τ)

q(ε3)(t, τ) ≡
∑

zα∈ZS

[
z3
αq̂(zα)e

−iωαt + c.c.
]

+

2∑
j=1

2∑
`=1

[
zjη`Q

(η`)
(zj)

e−iωjt + c.c.
] (B 18)

To ensure the solvability of the resonant terms we must enforce compatibility conditions,
i.e. the Fredholm alternative. The resonant terms are then determined from the resolution
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ν11 ν12 ν13 ν21 ν22 ν23

−0.57− 0.28i −0.04 + 0.13i −1.3− 1.2i −0.1− 0.23i −0.25− 0.94i −0.15− 2.5i

ν31 ν32 ν33 χ1 χ2 χ3

−1.6 + 2.3i −1.0 + 0.48i −0.76 + 0.34i 1.7− 1.8i −0.27− 0.61i −3.0− 1.7i

Table 5: M∞ = 0.3.

ν11 ν12 ν13 ν21 ν22 ν23

−0.068 + 0.032i −0.025 + 0.028i −0.33 + 0.076i −0.10 + 0.090i −0.27 + 0.23i −0.34 + 0.076i

ν31 ν32 ν33 χ1 χ2 χ3

−0.15 + 0.022i −0.43− 0.009i −0.25− 0.15i −0.015− 0.047i −0.076 + 0.033i −0.065− 0.048i

Table 6: M∞ = 0.5.

of the following set of bordered systems(
J(ωk,mk) q̂(zk)

q̂†(zk) 0

)(
q̂

(z
(S)
α )

s

)
=

(
F̂

(z
(S)
α )

0

)
, z(S)

α ∈ ZS (B 19)

where s = λ
(ε2ν)
k (respectively s = λ

(ε2
M2

∞
)

k ) for z
(S)
α = zk and s = ν

(0)
kl for z

(S)
α = zk|z`|2

and s = χ1 for z
(S)
α = z2

2z3, s = χ2 for z
(S)
α = z1z2z3, and s = χ3 for z

(S)
α = z2

2z1.
Table 5 and table 6 list the cubic coefficients of the normal form for the two considered
Mach numbers based on the far-field speed of sound (M∞).

B.5. Example of a larger number of mode interactions

The general case with arbitrary N limit cycles may be expressed as

żj = zj
(
λj +

∑N
k=1 νjk|z|2k

)
+ NLj,res for j = 1, . . . , N (B 20)

where NLj,res are the resonant terms at the third order. For N = 5, the resonant term is
as follows,

NLres =


χ1,1z

2
2z3 + χ1,2z2z3z4 + χ1,3z2z4z5 + χ1,4z

2
3z5

χ2,1z1z2z3 + χ2,2z1z4z3χ2,3z1z5z4χ2,4z
2
3z4 + χ2,5z3z4z5

χ3,1z
2
2z1 + χ3,2z2z3z4 + χ3,3z

2
4z5

χ4,1z5z4z3 + χ4,2z
2
3z2 + χ4,3z3z2z1χ4,4z5z2z3χ4,5z5z1z2

χ5,1z
2
4z3 + χ5,2z4z3z2 + χ5,3z4z2z1 + χ5,4z

2
3z1

 (B 21)

Figure 15 (b) illustrates the resonant interactions for N = 5 for the equation of z3, i.e.
NL3,res = χ3,1z

2
2z1 + χ3,2z2z3z4 + χ3,3z

2
4z5.
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Figure 15: (a) Sketch of the spectrum. (b) Sketch of the spectrum indicating the local
contributions to the normal form: (double) solid line indicates the coefficient multiplies
the (square) of the mode, dashed line the complex conjugate of the mode.
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formulée pour l’acoustique potentielle. PhD thesis.

Tam, Christopher KW & Ahuja, KK 1990 Theoretical model of discrete tone generation by
impinging jets. Journal of Fluid Mechanics 214, 67–87.

Tam, Christopher KW & Chandramouli, Sathyanarayan 2020 Jet-plate interaction tones
relevant to over-the-wing engine mount concept. Journal of Sound and Vibration 486,
115378.

Tanaka, Dan 2005 Bifurcation scenario to nikolaevskii turbulence in small systems. Journal of
the Physical Society of Japan 74 (8), 2223–2225.
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Varé, Mathieu & Bogey, Christophe 2022a Generation of acoustic tones in round jets at
a mach number of 0.9 impinging on a plate with and without a hole. Journal of Fluid
Mechanics 936.
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