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a b s t r a c t

In this work, we present a novel approach to perform the linear stability analysis
of fluid–structure interaction problems. The underlying idea is the combination of a
validated immersed boundary solver for the nonlinear coupled dynamics with Krylov-
based techniques to obtain a robust and accurate global stability solver for elastic
structures interacting with incompressible viscous flows. The computation of the leading
eigenvalues of the linearized system is carried out in a matrix-free framework by adopt-
ing a classical Krylov subspace method. The proposed algorithm avoids the complex
analytical linearization of the equations while retaining all the relevant aspects of the
fully-coupled fluid–structure system.

The methodology has been tested for several cases involving two-dimensional incom-
pressible flows around elastically mounted circular cylinders. The obtained results show
a good quantitative agreement with those available in the literature. Finally, the method
was applied to investigate the linear stability of the laminar flow past two elastically
mounted cylinders in tandem configuration at Re = 100, revealing the existence of two
complex dominant modes. For low values of the reduced velocity U∗, only one mode is
found to be unstable and related to the stationary wake mode. The loss of stability of
the second mode at U∗

= 4 marks the beginning of the lock-in region. We also show
that for U∗

= 5 the modes interact, giving rise to the beating phenomenon observable in
the nonlinear time evolution of the system. For larger values of the reduced velocity, the
linear dynamics is governed by one dominant mode characterized by wider oscillations
of the rear cylinder, matching the results of the nonlinear simulations.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction of elastic bodies with incompressible flows has attracted the interest of many researchers since the
ioneering studies on aeroelasticity (Theodorsen, 1934; Kornecki et al., 1976). These configurations are encountered in
large variety of engineering applications, spanning from biomedical devices (de Tullio et al., 2009; Borazjani, 2013) to
nergy harvesting systems (Doaré and Michelin, 2011; Grouthier et al., 2014; Nitti et al., 2022) and unmanned underwater
ehicles (Tangorra et al., 2007; Mansoorzadeh and Javanmard, 2014). Such systems are prone to several types of instability
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and, despite their complex nonlinear behavior, the early stages of the transition between two distinct dynamical states
can often be explained in terms of the excitation of a linearly unstable mode. While being a well-established technique for
investigating fluid flows (Theofilis, 2011), linear stability analysis (LSA) has been adopted quite recently for cases involving
fully coupled fluid–structure interactions (FSI), mainly to provide insights into the physical mechanisms associated with
the emergence of flow-induced oscillations and to design control strategies able to suppress them.

The first examples of linear stability analyses over FSI configurations date back to the pivotal studies of Theodorsen
1934) on the flutter instability of an aerodynamic section. Theodorsen formulation was based on the potential flow
nd slender body assumptions. While the adoption of these simplified flow models is legitimate in the field of classical
eronautics, applications involving low to medium Reynolds numbers or flow separation require the simultaneous solution
f the linearized Navier–Stokes equations coupled with the linearized equation of motion of the elastic solid.
Cossu and Morino (2000) were the first to perform a linear stability analysis of a two-dimensional low Reynolds number

low interacting with an elastically-mounted bluff body. They investigated the primary instability of a circular cylinder,
hich was free to oscillate in the cross-flow direction by solving the linearized flow equations in a moving reference frame.
avrose and Mittal (2016) adopted the same approach with a non-inertial frame of reference to conduct a parametric
tudy of the lock-in phenomenon exhibited by elastically-mounted circular cylinders in the laminar flow regime. Cossu
nd Morino (2000) reported a critical Reynolds number half the value obtained for the fixed cylinder case with low solid-
o-fluid density ratios. Meliga and Chomaz (2011) extended the stability analyses to smaller mass ratios (O(10−4)). The
numerical technique employed therein consisted in a multiple-time-scale expansion to decouple fluid and solid dynamics
at the leading order of the perturbation.

More recently, Pfister et al. (2019) adopted a Lagrangian-based approach to derive a linearization of the equations
of motion for a coupled fluid–structure problem written in an Arbitrary-Lagrangian–Eulerian (ALE) framework. This
formulation becomes cumbersome when it is based on the Lagrangian motion of the structure, requiring important
modifications in the residual o the Navier–Stokes equations to take into account the motion of the mesh. Fernández and
Le Tallec (2002) proposed, instead, an Eulerian-based formulation in an attempt to overcome the difficulties arising from
a moving grid. In their formulation, obtained starting from the weak form of the ALE equations, the coupling between the
flow and the solid is made via a transpiration technique. Although reducing considerably the complexity of the problem,
this method produces additional stress contributions at the interface, termed added stiffness, that depend on higher-order
erivatives of the flow variables. Negi et al. (2020) followed the same methodology but performed the linearization of
he equations of motion in their integral form.

Moulin et al. (2017) suggested the use of non-conforming methods to investigate the stability of strongly coupled FSI
ystems, discussing, in particular, the adoption of a fictitious domain formulation to handle the coupling between the fluid
nd the solid. Goza et al. (2018), who also proposed a non-conforming approach, conducted a global stability analysis of
nverted flags submerged in uniform flows using an Immersed Boundary (IB) method. They resorted to the numerical
erivation of the Jacobian matrix linearizing the discretized operators around the steady state via a first-order finite
ifference scheme. The memory requirements with matrix-forming strategies become rapidly unfeasible when dealing
ith a large number of degrees of freedom, e.g., three-dimensional FSI configurations. This aspect is even more relevant

n the computation of neutral curves since the Jacobian matrix must be re-evaluated for each base flow.
In this work, we propose an alternative procedure to study the linear stability characteristics of FSI systems by adopting

Jacobian-free approach (Mettot et al., 2014). Matrix-free strategies lead to significant memory savings at the cost of
onger integration times. In contrast, they provide access to only a subset of the spectrum associated with the eigenvalue
roblem (EVP) that originates from the classic normal-mode approach. Nonetheless, the accessible portion of the spectrum
s generally the most relevant, consisting of the most unstable eigenvalues.

In the present article, we adopt a time-stepping methodology that makes use of high-fidelity nonlinear simulations
btained with a direct-forcing IB method, based on a moving-least-square (MLS) approach. One of the main advantages
f the IB formulation resides in the fact that it can handle multi-body configurations with no additional complexity. In
ddition, the fluid equations are resolved on a staggered Cartesian grid, which makes the method prone to a simple parallel
mplementation for three-dimensional computations.

The choice of the specific IB forcing technique is crucial for the success of the computation. It has been noted that
he use of a sharp forcing field usually leads to the appearance of unphysical fluctuations of the hydro-dynamical force
cting on the solid body (Uhlmann, 2003). Seo and Mittal (2011) attribute the emergence of pressure oscillations to an
nintended transpiration effect at the immersed boundary, due to the fact that the role of the Eulerian nodes close to the
nterface can change from a time-step to the next as the body moves. These spurious oscillations can be suppressed by
preading the forcing term over a wider stencil through the use of a smoother Lagrangian–Eulerian transfer function (Yang
t al., 2009). In view of these considerations, and after a few trials, we adopted an MLS forcing procedure that provides
good trade-off between accuracy and robustness. Details on the IB treatment are provided in the next section.
The proposed strategy involves the adoption of the matrix exponential, first introduced by Eriksson and Rizzi (1985)

n the context of global stability analysis. In their paper, the authors proposed to approximate the action of the Jacobian
atrix via finite differences to investigate the instability of the transonic flow over an airfoil, a phenomenon modeled
y the two-dimensional Euler equations. They also highlighted the need for a matrix transformation to retrieve the least
table portion of the spectrum of the discrete operator. The same approach was later extended to the full Navier–Stokes
quations by Chiba (1998), who performed a linear stability analysis of the two-dimensional square lid-driven cavity flow,
2
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and by Tezuka and Suzuki (2006), who carried out a TriGlobal stability analysis (Theofilis and Colonius, 2011) of the flow
around various spheroids.

Gómez et al. (2011) incorporated the approach of Tezuka and Suzuki (2006) into publicly-available computational fluid
ynamics (CFD) solvers, highlighting the flexibility of the method that looks at the CFD solver as a black-box source. In a
uccessive paper (Gómez et al., 2015), Gomez et al. extended that work by inserting a shift-invert strategy to grant access
o specific portions of the spectrum. Our contribution builds on the above-mentioned series of papers and provides an
xtension of Chiba’s approach to FSI problems.
This paper is organized as follows. First, in Section 2, we introduce the problem of linear stability in the context

f fluid–structure interaction and derive the theoretical foundations of the methodology. Numerical validation of the
olver is presented in Section 3, together with the results obtained by applying the presented strategy to the problem of
low-induced vibrations of two cylinders in tandem. In Section 4, the main results and conclusions are summarized.

. Methodology

In this work, the discussion is restricted to the motion of elastically-mounted rigid bodies immersed in a two-
imensional incompressible viscous flow, although the derived method remains completely general.

.1. Governing equations

The governing equations of the flow dynamics are the incompressible Navier–Stokes equations, written in the
imensionless form:

∂u
∂t

+ u · ∇u = −∇p +
1
Re

∇
2u + f ,

∇ · u = 0,
(1)

where u and p denote the fluid velocity and pressure, respectively. The body force term f , in the absence of other external
fields, corresponds to the IB body-force field. Eq. (1) is closed by appropriate boundary conditions related to the specific
considered configuration. Flow variables have been made dimensionless by considering a reference length Lr and velocity
scale Ur ; the Reynolds number is defined as Re = (UrLr )/ν, with ν the kinematic viscosity of the fluid.

The structure is modeled as a rigid body with the elastic center coincident with the center of mass. Its motion is
governed by Newton’s second law for the ith degree of freedom:

ẍi +
σi

A∗

i ρ
∗
ẋi +

ki
A∗

i ρ
∗

(
xi − xeqi

)
= Ci, i = 1, . . . , nDOF (2)

where the variables have been made dimensionless by means of the bulk parameters of the flow field.
The system of equations given by (2) represents a spring–mass–damper system where σi and ki are, respectively,

the non-dimensional linear damping and stiffness coefficients of the ith degree of freedom (DOF), xeqi is the equilibrium
position of the ith spring and nDOF gives the total number of degrees of freedom. For instance, nDOF = 3 in two-dimensional
problems, comprising the two components of the displacement and the rigid rotation around the center of mass. The term
A∗

i ρ
∗ represents the non-dimensional mass coefficient. In two dimensions, for the translational DOFs, A∗

i corresponds to
A∗, which is the ratio of the cross-sectional area of the body to the square of the reference length, Lr . For the rotational
DOF, A∗

i = I∗, which is the second moment of area with respect to the centroidal axis divided by the fourth power of Lr .
The coefficient Ci represents the non-dimensional force (or torque) acting upon the ith DOF.

In the examples illustrated throughout this work, the effect of gravity has been neglected and the only contribution to
the forcing term in the body equations comes from the interaction with the flow. That being the case, the behavior of a
rigid body with only one degree of freedom is governed by two dimensionless parameters: the density ratio ρ∗

= ρs/ρf ,
which is the ratio of solid to fluid density, and the reduced velocity U∗

=
√
(A∗

1ρ
∗4π2)/k1, representing the ratio of

wo characteristic time scales of the problem, i.e., the period of the natural mode of the body and that of the convective
otions of the flow.

.2. Time stepping - Pressure-segregation algorithm

The Navier–Stokes equations (1) are integrated in time through a semi-implicit procedure (Nitti et al., 2020), where
he convective and viscous terms are discretized by a third-order Runge–Kutta (RK) and a Crank–Nicolson scheme,
espectively. Each substep is resolved by means of a classical fractional-step method,

û = ϕ̂
[1]
∆tu

k,

ũ = ϕ
[1]
∆tu

k,

uk+1
= ϕ

[2]ũ =

(
ϕ

[2]
◦ ϕ

[1]
)
uk,

(3)
∆t ∆t ∆t

3
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where uk is the velocity field at the kth RK substep, û is an intermediate velocity field that does not satisfy the interface
conditions, ũ is a provisional field that is globally divergence-free, but not locally, and uk+1 is the updated velocity field
t the (k + 1)th substep. The preliminary velocity û is computed explicitly via the discrete flow ϕ̂

[1]
∆t ,

ϕ̂
[1]
∆tu

k
≡ uk

+ ∆t
[
−αk

∇pk +
αk

Re
∇

2uk
+ βkHk

+ γ kHk−1
]

, (4)

where H represents the nonlinear terms u · ∇u and αk, βk and γ k are the coefficients of the time scheme (see Nitti et al.
(2020) for details). The computed field is next used to evaluate the IB forcing f , whose detailed description is left to
Section 2.2.1. Then, the provisional velocity field ũ is computed by solving the Helmholtz equation(

1 −
αk∆t
2Re

∇
2
)

∆ũ = û − uk
+ ∆tf (û), (5)

where ∆ũ = ũ − uk. The discrete flow ϕ
[1]
∆t is defined as

ϕ
[1]
∆tu

k
= uk

+

(
1 −

αk∆t
2Re

∇
2
)−1 (

û − uk
+ ∆tf (û)

)
(6)

Finally, the pressure is updated according to

pk+1
= pk +

(
1 −

αk∆t
2Re

∇
2
)
p∗, (7)

ith the scalar quantity p∗ resulting from the solution of the Poisson equation,

∇
2p∗

=
∇ · ũ
αk∆t

. (8)

The RHS of Eq. (8) enforces the continuity of the final velocity field uk+1, given by the discrete flow ϕ
[2]
∆t ,

uk+1
= ϕ

[2]
∆t ũ ≡ ũ − αk∆t∇p∗. (9)

A second-order-accurate spatial discretization is achieved using centered finite differences in a non-uniform staggered
Cartesian grid.

Given the time-splitting nature of the fractional-step approach, the boundary conditions at the fluid–structure interface
are enforced on an intermediate non-solenoidal velocity field. This imposition is subsequently spoiled in the corrector
step to enforce local continuity (Fadlun et al., 2000); however, the modification of the interface velocity caused by the
correction step can be minimized through a repetition of the forcing procedure after the solution of the Helmholtz
equation (5). Observations have shown that the discrepancy between the interpolated final fluid velocity and the local
body velocity is effectively reduced with three to five iterations of the forcing procedure (Breugem, 2012), up to a
root-mean-square error equal to ∼ O(10−5).

Within the present method, the local difference between the interpolated fluid velocity and the solid velocity employed
in the forcing stage is measured downstream of the time-scheme, and its Root Mean Square (RMS) is evaluated over the
set of Lagrangian markers (see Section 2.2.1). In presence of moving surfaces, the RMS error is found to be ∼ O(10−4) of
the freestream velocity (see fig. 11 of Nitti et al. (2020)).

The equations of motion for the rigid body are integrated in time by means of a Crank–Nicolson scheme. Within this
staggered approach, at each sub-step, the fluid, and structural systems are solved in a sequential fashion: first, a low-order
extrapolation for the fluid–solid interface position and velocity is employed in the IB procedure to advance the flow field
in time; then the coupling between fluid and rigid-body dynamics is accomplished using the Eulerian load distribution
f coming from the IB procedure to obtain the total force and moment integrals (Lācis et al., 2016; chih Lai and Peskin,
2000) in the RHS of Newton’s equations (2). This procedure avoids the integration of pressure and viscous stresses on
the contour of the body, circumventing the need for a reconstruction procedure. When the density ratio ρ∗ is close to
unity, a strong coupling of the fluid and solid solutions may be needed (Förster et al., 2007). For the majority of the
examples presented, a weak coupling between the fluid and structural systems was able to capture the dynamics with
sufficient accuracy. A strong iterative coupling was employed for the tandem cylinders case presented in Section 3.3, for
which ρ∗

= 2.546. Within this simple iterative approach, we measure the L∞ norm of the relative difference in the body
displacement between two successive iterations and iterate until its value is below the convergence tolerance tol = 10−8.
The method usually converges within two to six iterations. For the investigated cases, though, the loosely and strongly
coupled algorithms yield negligible differences, as shown in fig. 9 of Borazjani and Sotiropoulos (2009) within a similar
IB-FSI framework.

The simulations employed for the stability calculations were performed with a fixed time-step taken small enough
to keep the CFL condition around the value of 0.2, in order to capture the FSI dynamics with sufficient accuracy for all
explored configurations. The average spacing between adjacent Lagrangian markers was set equal to 0.5∆xloc , where ∆xloc
is the local Eulerian cell dimension. Further details on the method can be found in Nitti et al. (2020).
4
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2.2.1. Immersed boundary procedure
The boundary conditions at the fluid–structure interface are imposed on the provisional velocity field using a direct-

orcing immersed boundary technique. Following Uhlmann (2005), body-force terms are computed over a set of suitably
paced Lagrangian markers laying on the immersed surface. Each velocity component is interpolated at the Lagrangian
arkers via an MLS approximation (Vanella and Balaras, 2009),

V̂i(xl) = ΨT(xl)ûi, (10)

here ûi is the array that collects the ith velocity component at the face centers within the support domain (see Fig. 1)
f each Lagrangian marker and V̂i is the ith velocity component at the Lagrangian position xl. In two dimensions, the
inimum number of grid cells ne contained in the support domain is equal to 9. The linear operator ΨT(xl) is defined as

ΨT(xl) ≡ pT(xl)(A(xl))−1B(xl), (11)

here
pT(xl) = [1, xl, yl],

A(xl) =

ne∑
k=1

W
(
xl − xk

)
p

(
xk

)
pT

(
xk

)
,

B(xl) =
[
W (xl − x1)p(x1) . . .W (xl − xne )p(xne )

]
.

(12)

he weight function W (xl − xk) plays the role of a convolution kernel. Throughout this work, the exponential function is
sed,

W(xl − xk) =

{
e−(rk/ϵ)2 for rk ≤ 1
0 for rk > 1

(13)

here rk = |xL − xk|/ri, with ri the size of the support domain in the ith direction and ϵ = 0.3. A volume force component
s then computed for each Lagrangian marker l,

F l
i =

V l
i − V̂i(xl)

∆t
, (14)

here V l
i is the ith component of velocity to be imposed at the interface and ∆t is the time-step of the numerical scheme.

inally, the forcing term to be added to the RHS of the Navier–Stokes equations (1) is computed at each Eulerian grid point
sing again the shape functions of the interpolation procedure

f ki =

nl∑
l=1

clΨ l
kF

l
i , (15)

here f ki is the ith component of the forcing for the kth Eulerian grid point, nl is the number of Lagrangian markers whose
upport domain contains the selected Eulerian point and cl is a scaling coefficient (see Nitti et al. (2020) for details).

2.3. Linear stability

In this section, we focus on the linear stability of the coupled system. After spatial discretization, fluid and solid
variables are collected into the state vector q, and the problem is reformulated as

dq
dt

= R(q), (16)

here R is the nonlinear evolution operator of the system. The linear stability of a steady-state qb of the system
R(qb) = 0) can be studied by observing the evolution in time of a small-amplitude perturbation, ϵq′, superimposed
n the base state (q(t) = qb + ϵq′(t)). By injecting this decomposition into (16) and retaining only the first-order terms,
he evolution of q′ is governed by

dq′

dt
=

∂R
∂q

⏐⏐⏐⏐
qb

q′
= J (qb)q

′, (17)

where J (qb) is the linear Jacobian operator evaluated with respect to the steady-state qb. Following the traditional
ormal-mode approach, the stability characteristics of the system are deduced from the spectrum of the Jacobian operator,

q′(t) = q̂eωt
+ c.c. (18)

(J (qb) − Iλ) q̂ = 0 (19)
5
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Fig. 1. Scheme of the IB forcing. The Eulerian nodes contained in the support domain of the selected marker are involved in the forcing procedure.

where ω is a complex eigenvalue, q̂ is the spatial structure of the related eigenmode and c.c. indicates the complex
onjugate. For an autonomous system, the exact solution of the linear initial value problem expressed by Eq. (17) is given
y

q′(t0 + T ) = eJ(qb)Tq′(t0) = Φ(T )q′(t0), (20)

where the operator Φ is known as the exponential propagator of the system. Injecting into Eq. (20) the modal decompo-
sition, we get the following eigenvalue problem

µq̂ = Φ(T )q̂. (21)

he eigenvalues of the two problems are related through the exponential transformation µ = eωT , while the eigenvectors
emain unchanged. The asymptotic linear stability properties of the system are dictated by the module of the eigenvalues
. If all eigenvalues have |µ| < 1, the system is linearly stable, while it is unstable if at least one eigenvalue has |µ| > 1.
or |µ| = 1, the system is neutrally stable. The exponential transformation alters the spectrum in such a way that the
ominant eigenvalues, i.e. the eigenvalues of largest modulus, correspond to the leading ones in the original eigenvalue
roblem, where with the term leading, we refer to the eigenvalues with the largest real parts.

.3.1. Numerical strategy
The problem of linear stability is now reduced to finding the eigenvalues of an N ×N matrix Φ, where the dimension

N is given by the number of cells or nodes of the discretized domain times the number of flow variables, plus the degrees
of freedom of the body. For real-world systems, the explicit calculation (and storage) of the matrix exponential often
carries a prohibitive computational load and one must resort to iterative algorithms, such as those belonging to the class
of Krylov-subspace projection methods. In these algorithms, an M-dimensional Hessenberg matrix H (with M ≪ N)
approximates the matrix exponential in a low-dimensional Krylov subspace, which is constructed via the repeated action
of operator Φ on a given starting vector. The eigenvalues of the Hessenberg matrix, the so-called Ritz values, constitute
an approximation of the eigenvalues of the exponential matrix.

Given the matrix-free framework of this method, we aim at the approximation of the action of Φ on a perturbation
vector. In doing so, we introduce the propagator F (q) of the complete solution,

q(t0 + T ) = F (q0, T ), (22)

here q0 = q(t = t0) is the value assumed by the state vector q at a given time t = t0 and q(t0 + T ) represents its
volution after a time T . The solution at time t = t0 can be expressed as the superposition of the previously defined
teady-state qb and a small amplitude deviation for this base state ϵq′(t0). A Taylor expansion of operator F around the
ase state qb yields

F (qb + ϵq′(t0), T ) = F (qb, T ) +
∂F (q, T )

∂q

⏐⏐⏐⏐
qb

ϵq′(t0) + O(ϵ2), (23)

here ϵq′(t ) represents a small deviation from the base state.
0

6
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It can be shown that the second term on the RHS is, up to the scalar ϵ, an approximation of (q′(t0 + T ) − q′(t0)) for
small values of T . The details of this derivation are provided in Appendix A.

Substituting the derivative of F (q, T ) into the RHS of (23) and neglecting higher order terms in ϵ, we get an expression
for evaluating the advancement in time of the perturbation based only on the propagator of the complete solution,

q′(t0 + T ) ≈
F (qb + ϵq′(t0), T ) − F (qb, T )

ϵ
. (24)

aking the limit of Eq. (24) as ϵ −→ 0, the RHS gives a Gateaux derivative of F at qb,

lim
ϵ→0

F (qb + ϵq′(t0), T ) − F (qb, T )
ϵ

. (25)

n a discrete context, the action of the time-marching matrix of the perturbation can be recovered through a finite
ifference that only involves calls to the time-stepping scheme described in Section 2.2 (here we have adopted the same
omenclature to refer to both discrete and time-continuous operators). Selecting a small but non-zero value of ϵ, the
erivative given by (25) can be approximated by

F (qb + ϵqp(t0), n∆t) − F (qb, n∆t)
ϵ

, (26)

here qp represents the perturbation vector in the discrete system. For ease of notation, we employ the same notation

b to refer to both the continuous and discrete base state. The parameter n is the number of time-steps by which the
olution is advanced in time and ∆t is simply the time-step of the scheme, chosen according to the desired CFL condition.
A better approximation of (25) can be built via higher-order finite differences. In the present work, we employ a

econd-order finite difference to approximate the evolution of a given perturbation qp(t0):

qp(t0 + n∆t) =
q+ − q−

2ϵ
, (27)

here q+ and q− are the results of two separate calls to the FSI solver, advancing in time the base state after the addition
nd subtraction, respectively, of the same small perturbation:

q+ = F (qb + ϵqp(t0), n∆t), (28)

q− = F (qb − ϵqp(t0), n∆t). (29)

lthough such an approach presents the disadvantage of requiring two calls to the time-stepper, it reduces the number
f required iterations by providing a more accurate estimate for the matrix–vector product (Knoll and Keyes, 2004).
We can compute a set of the least stable eigenvalues via a Krylov projection method. In this work, approximations to

he leading eigenvalues of the system are computed using the implicitly restarted Arnoldi method (IRAM) (Sorensen, 1992)
s implemented in the ARPACK open source package (Lehoucq et al., 1998).
The base states here considered are equilibrium solutions of the fully coupled nonlinear system, therefore their

valuation requires the solution of a nonlinear algebraic system.
For large-scale problems, a pure Newton–Raphson method is prohibitive because of the size of the systems, hence

he most common approach to overcome this difficulty is the use of a Newton–Krylov technique. In this work, the base
tate for each test case was computed using BoostConv (Citro et al., 2017), an iterative residual recombination procedure
elonging to the class of Krylov methods.
The choice of such an algorithm fits perfectly into our matrix-free approach since BoostConv can be easily applied as

black-box procedure requiring only several calls to a pre-existing time-marching algorithm, without any modification.
The outline of the algorithm is shown below:

1. The base flow is computed via BoostConv (Citro et al., 2017)
2. Arnoldi iterations are performed until the desired convergence is reached: (k = 1, 2, . . .)

(a) Vector qk
p is generated

(b) Reverse communication (Lehoucq et al., 1998) with the flow solver provides qk
p =

q+
−q−

2ϵ
(c) Convergence of the desired Ritz pairs is checked

3. A logarithmic transformation is performed to recover the original eigenvalues: λ = (log |µ| + i arg(µ)) (n∆t)−1.

or all cases shown in this article, a non-zero pseudo-random perturbation has been employed as a starting vector for the
rnoldi iterations, respecting the divergence constraint on the velocity. It is worth pointing out that the present approach
ircumvents the need to select appropriate boundary conditions for the perturbation field, while the boundary conditions
f the nonlinear evolution problem are included in the discrete operator F .
7
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Some remarks on the effect of the IB interface on the linear results. With the IB approach, the solid–fluid interface is enforced
by a time-varying distribution of forcing terms that mimics the effect of the body on the flow. Since, in general, the
interface does not coincide with the grid lines, the need for an interpolation procedure arises. The way this transfer of
information is done defines the specific variant of the IB method.

In the presence of a moving interface, the choice of the interpolation scheme is even more important. It has been noted,
for instance, that non-physical force oscillations arise, in this case, with some variants of the IB method (Yang et al., 2009),
like the discrete Delta function formulation. Complications emerge also with the Cartesian grid (or cut-cell) approach, in
which the fluid–solid interface is sharply tracked, in view of the fact that the role of the grid points near the interface can
change from time-step to time-step (Yang and Balaras, 2006) (i.e. a grid point that belongs to the portion of the domain
occupied by the solid at a given time-step can drop out of the body contour at the next time-step and viceversa). While
the role of the node changes, it still carries the physical information about its previous phase, consequently, the local
pressure field is strongly perturbed.

The choice of the above-described MLS technique, among the diverse options belonging to the class of non-conforming
methods, is motivated by the need for a smooth transfer between Lagrangian and Eulerian nodes (Vanella and Balaras,
2009; Uhlmann, 2003). Indeed, the emergence of non-physical pressure oscillations in the nonlinear solution would have
a detrimental impact on the accuracy of Eq. (27), involved in the computation of the linear modes with respect to the
steady-state. The present method shows reduced spurious oscillations in the vicinity of the interface due to the fact that
the IB forcing field is slightly smeared within the compact support of the MLS interpolation.

One issue of interest is to what extent the smeared representation of the interface affects the accuracy of the
computation for higher Reynolds number flows. The wall-resolved computation of the viscous shear layer in presence
of moving immersed boundaries is still an open research area. One way to improve the local accuracy with reasonable
computational expense within an IB framework is to employ a locally refined semi-structured grid (Durbin and Iaccarino,
2002; de Tullio et al., 2007) in order to increase the grid resolution near the body. It is worth recalling that the present
method relies on the linearization of the system around steady solutions of the Navier–Stokes equations, which usually
exist for sufficiently low Reynolds numbers.

Another point to be considered is the effect of the IB treatment on the evaluation of the finite difference in Eq. (27)
itself. When the position of a given Lagrangian marker falls into a certain grid cell in the solution q+ and into an adjacent
cell in q−, the subtraction (q+−q−) involves grid points that are included in the support domain of the marker in one case
and left out in the other. To avoid this problem, the support domain of each marker is kept fixed during the evaluation
of q+ and q−, such that the forced fluid cells are the same in the two solutions. The corresponding marker is prevented
from falling outside of the fixed support owing to the short integration time T and the small scaling factor ϵ employed
in the linearization procedure. In this way, the procedure provides an accurate and robust computation of leading modes
with a finite difference approach.

2.3.2. Selection of the linearization parameters
One critical aspect of the presented procedure is the selection of the linearization parameters, i.e., the integration period

T = n∆t and the perturbation scaling factor ϵ.
The choice of the integration time is somewhat problem dependent. As reported by Goldhirsch et al. (1987), for a given

number of requested eigenvalues k, the order of the error related to the model reduction is given by |e(λk−λM )T
|. This means

that the accuracy can be improved either by increasing the number of integration time steps n, or by augmenting the
dimension of the basis M . Eriksson and Rizzi (1985) refer to n as a selectivity parameter, in the sense that, as it increases,
the separation among the least damped eigenvalues is magnified. Both options can provide sufficient separation between
the desired eigenvalues and the remaining part of the spectrum.

In spite of that, it is worth noting that this methodology is based on an approximation of the evolved perturbation,
given by Eq. (24), which is valid for short integration periods. For this reason, it is legitimate to keep T small while
increasing the value of M for particularly clustered eigenvalues.

One issue to be considered when dealing with iterative methods is the need for convergence acceleration that arises
for high-resolution simulations. The rate of convergence of an iterative method decreases with the condition number of
the Jacobian matrix, which in turn increases as the grid is refined. To address this issue and improve the performance
of the method, adequate preconditioning is usually required. Building a preconditioner in a matrix-free context is not a
trivial task because the matrix is never formed and standard preconditioning techniques cannot be directly applied.

To preserve the flexibility of the time-stepping global stability solver, the technique employed to control the conver-
gence must be iterative and matrix-free. As an example, Mack and Schmid (2010) proposed a Jacobian-free DNS-based
global stability solver for compressible flows with the addition of a preconditioning matrix in explicit form. Instead,
Asgharzadeh and Borazjani (2017) addressed this issue through the use of an analytical Jacobian as a preconditioner
in a Newton–Krylov method for the implicit solution of the Navier–Stokes equations. Some other options for matrix-free
preconditioning are discussed in Knoll and Keyes (2004).

The remaining parameter that must be selected by the user is the linearization coefficient ϵ, i.e. the amplitude of the
discrete perturbation. Its value should result from a trade-off between the truncation error of the finite difference and
round-off errors related to the finite precision arithmetic.
8
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w

Fig. 2. Spatial distribution of the vorticity for the real (a) and imaginary (b) parts of the unstable eigenmode of the flow past a fixed circular cylinder
at Re = 50.

Table 1
Unstable eigenvalue for the flow past a fixed circular cylinder at Re = 50. Present results
show good agreement with values present in the literature, as indicated by the relative
error reported on the right.
Reference ω (%)

Siconolfi et al. (2017) 0.0160 + 0.759i 2.85
Negi et al. (2020) 0.0133 + 0.742i 0.61
Present 0.0154 + 0.738i –

Literature provides some guidelines for the appropriate choice of ϵ, the interested reader is referred to the works of
Eriksson and Rizzi (1985), Knoll and Keyes (2004), Schulze et al. (2009) and Mack and Schmid (2010). In this work, we
follow a commonly used approach that selects the scaling factor of the perturbation at each time-stepper call via

ϵ = ϵ0
∥qb∥ + ∥qp∥

∥qp∥
, (30)

here ∥q∥ is the L2 norm of vector q and ϵ0 is a user-defined parameter related to the truncation error (An et al., 2011)
of the FSI time-stepping scheme.

The choice of ϵ0 has a great influence on the success of this time-stepping approach, and the user should keep in mind
that this task is somewhat solver-dependent. Following the example of Mack and Schmid (2010), we report in Appendix C
a parametric study that illustrates the influence of the parameter ϵ0 on the accuracy of the results obtained for a given
configuration.

3. Validation and results

In this section, to validate the algorithm derived above, we present the results of several numerical tests involving the
vortex-induced vibration (VIV) of elastically mounted circular cylinders in a cross-flow. After the validation, a multi-body
configuration is finally explored, consisting of the VIV of two identical spring-mounted cylinders in tandem configuration.

3.1. Flow past a fixed circular cylinder

The proposed methodology has been first validated with respect to the two-dimensional flow past a fixed circular
cylinder, which is the subject of abundant literature in the field of hydrodynamic instability as it is considered the
prototype flow around bluff bodies.

For this case, the flow quantities are made dimensionless by taking the diameter of the cylinder D and the incoming
flow velocity U∞ as reference variables. The reported results are obtained over a rectangular domain with size [−28D :

52D] × [−28D : 28D], with the origin placed on the cylinder axis. A uniform streamwise velocity is imposed at the
inlet boundary along with a zero cross-sectional velocity (u = 1, v = 0), while free-shear boundary conditions are
enforced on the lateral boundaries. At the outlet, a convective boundary condition allows the outgoing waves to exit the
computational domain with minimal reflections while preserving local continuity. No-slip conditions are applied to the
velocity at the surface of the cylinder via the IB procedure described in the previous section. Fig. 3 illustrates an example of
the stretched Cartesian grid used for the computations. To obtain the results here presented, a grid containing 900 × 570
cells was employed, with a minimum grid spacing of 0.022D attained over a uniformly spaced rectangular region around
the cylinder measuring 10D in the streamwise direction and 4D in the cross-stream direction.

An estimate for the globally unstable eigenvalue ω at Re = 50 is reported in Table 1 along with results from Refs.
Siconolfi et al. (2017) and Negi et al. (2020), while Fig. 2 shows the vorticity field of the real and imaginary parts of the
related unstable eigenmode.

3.2. VIV of an isolated cylinder

As a second validation case, we report the results of the linear stability analysis of the VIV of an isolated elastically
mounted circular cylinder, to test the ability of our IB solver to accurately capture the dynamics of a small perturbation
of the fluid–structure system.
9
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Fig. 3. Example of a grid used for the linear stability analysis of the flow past a circular cylinder (for both the fixed and oscillating cases). To make
the graph more readable, every tenth grid point in each direction is displayed. The inset shows a close-up of the cylinder region for the actual grid
employed in the calculations.

The size of the domain and the distance of the center of mass of the cylinder from its boundaries are the same as in
he case of the fixed cylinder, as well as the boundary conditions. For all cases investigated, the Reynolds number based
n the cylinder diameter is kept fixed at Re = 60, the cylinder being free to oscillate only in the cross-stream direction
ith no structural damping.
For the computations, the same grid used for the case of the fixed cylinder was employed after a grid convergence

tudy. Results and details of the grid refinement study are reported in Appendix B together with an investigation of the
nfluence of the domain size on the accuracy of the results.

In Fig. 4, we report the variation of the non-dimensional frequency and growth rate of the two least stable eigenvalues
ith the reduced velocity U∗, for two distinct values of the relative density, namely, ρ∗

= 20 and ρ∗
= 5. For the largest

ensity ratio, the two leading modes exhibit a clear distinction for each value of the reduced velocity U∗. Following
avrose and Mittal (2016), we denote them as the fluid mode (FM), due to the high affinity that it shows with the wake
ode of the fixed cylinder (see Fig. 5), and the elastic mode (EM). This classification is further confirmed by noticing how

he frequency of the FM remains close to that of the unstable mode for the flow around a fixed cylinder at the same
eynolds number (see Table 1) for all values of U∗, while the frequency of the EM, on the other hand, decreases following
he variation of the natural frequency of the cylinder, given by 1/U∗.

For ρ∗
= 5, the two modes lose their distinction for intermediate values of U∗, therefore, following Navrose and Mittal

2016), we refer to them as the coupled fluid–elastic modes (FEM) I and II. For low values of U∗, modes FEMI and FEMII
esemble the stationary wake mode (i.e. the mode associated with the vortex-shedding in the wake of the fixed cylinder)
nd the elastic mode, respectively; however, as U∗ increases, the two eigenmodes become coupled and exchange their
haracteristics (see Fig. 6).

.3. Flow-induced vibrations of two cylinders in tandem

The case considered in this section is the configuration proposed by Borazjani and Sotiropoulos (2009), with two
dentical elastically mounted cylinders in tandem arrangement placed in a free-stream flow. A parametric exploration
f the dynamics of the system is beyond the scope of the current work, so we restricted our analysis to the 1-DOF case in
hich the cylinders are free to oscillate only in the cross-stream direction. The streamwise distance between their centers

s equal to 1.5 diameters, while the cross-stream offset is zero. No structural damping is considered and the solid-to-fluid
ensity ratio is kept constant at ρ∗

= 2.546 for all simulations. Given the low value of the density ratio and the close
roximity of the cylinders, the problem under investigation represents a challenging test case that can prove the flexibility
f the method.
We first present the nonlinear response of the cylinders at the diameter-based Reynolds number Re = 200, for values

f the reduced velocity spanning the range 1.5 ≤ U∗
≤ 14. A sketch of the computational domain along with the boundary

onditions employed is shown in Fig. 7. The inlet is located at a distance Lin = 15D from the midpoint between the centers
f the cylinders, with the total length of the domain being equal to L +L = 55D, while the lateral boundaries are placed
in out

10
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Fig. 4. Linear stability results: change of the growth rate λ and the Strouhal number, St = (fD)/U∞ , of the two least stable modes with U∗ for
∗

= 20 (a, c) and ρ∗
= 5 (b, d) at Re = 60. Continuous red line: results from Sabino et al. (2020); dashed blue line: results from Navrose

nd Mittal (2016); gray circles: present results. The red curves were reproduced using the open-source Matlab drivers of the StabFem project
https://gitlab.com/stabfem/StabFem). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 5. Spanwise vorticity field of the real part of FM (a, c) and EM (b, d) for (Re = 60, ρ∗
= 20) at U∗

= 7 (a, b) and U∗
= 9 (c, d). The fluid flows

from left to right. Note how the fluid mode resembles the unstable mode for a fixed cylinder reported in Fig. 2.

at a distance Llat = 15D from the centers. A uniform Dirichlet boundary condition is given at the inlet and on the lateral
boundaries, while a convective condition is assigned at the outlet with a convective velocity c = 0.8. The computations
were performed over a stretched Cartesian grid containing 900 × 520 cells, with a minimum grid spacing of 0.0154D in
the regularly spaced box region around the origin, measuring 4D in each direction.

All simulations were initialized with the steady base flow computed via BoostConv (Citro et al., 2017) by keeping the
cylinders fixed at their initial positions. No starting perturbation was superposed to the stabilized solution; thus, the
initial departure from the base flow was triggered only by round-off errors. Fig. 8 shows the temporal evolution of the
11
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Fig. 6. Spanwise vorticity field of the real part of FEMI (a, c) and FEMII (b, d) for (Re = 60, ρ∗
= 5) at U∗

= 5 (a, b) and U∗
= 6 (c, d). The fluid

lows from left to right.

Fig. 7. Sketch of the computational domain employed for the direct numerical simulations of the flow interacting with two circular cylinders in
tandem arrangement at Re = 200.

osition of the centers of mass of the two cylinders for different values of U∗, each one being representative of a distinct
behavior of the system. For U∗

= 3 (see Fig. 8(a)) the cylinders experience a longer transient phase characterized by
low-amplitude vibrations before reaching a periodic regime where the two cylinders oscillate out-of-phase with the front
one exhibiting higher amplitude than the rear. Borazjani and Sotiropoulos (2009) classified this behavior as state 1 of the
system and referred to the vibration state where the rear cylinder achieves a larger oscillation amplitude as state 2. When
the reduced velocity is increased to U∗

= 4, the dynamic response of the fluid–structure system changes noticeably as
the two cylinders exhibit a quasi-periodic behavior distinguished by larger amplitudes of vibration that undergo a low-
frequency modulation in time. As can be seen from the close-up region in Fig. 8(b), such modulations come with a change
in the phase difference between the two oscillatory motions, as the phase angles are generally out of phase, but match
periodically.

As the reduced velocity is further increased to U∗
= 5, a shift from state 1 to state 2 is observed and the two cylinders

oscillate in phase opposition, with the rear one exhibiting greater amplitude than the front one. For higher values of the
reduced velocity, there is no qualitative change in the dynamical response of the system. The trailing cylinder continues
to oscillate at a higher amplitude and out-of-phase with respect to the front one. Fig. 9(a) shows the variation of the
maximum displacement A∗

MAX with the reduced velocity for each cylinder; the A∗

MAX value was measured disregarding
the early transient phase. Results from Borazjani and Sotiropoulos (2009) and Griffith et al. (2017) are also included for
comparison, showing a good overall agreement with the present outcome. The main discrepancy observed for the higher
values of U∗ can be ascribed to the different initial conditions. To verify this assumption, we repeated the computations
for 11 ≤ U∗

≤ 14 starting from a snapshot of the unsteady solution at U∗
= 10; the results, represented in Fig. 9(a) by

ashed lines, are markedly closer to the data present in the literature. These findings could indicate the existence of a
ysteresis effect, already observed for the case of two stationary cylinders in tandem (Papaioannou et al., 2006) and for
he VIV of a single cylinder (Prasanth and Mittal, 2009; Singh and Mittal, 2005). However, a detailed characterization of
he system dynamics is beyond the scope of this article. Results obtained by running simulations of the same configuration
t Re = 100 are presented in Fig. 9(b); the behavior of the system is found to depend strongly on the reduced velocity
ith a good qualitative agreement with the Re = 200 case. Time traces of the displacements of the two cylinders are
eported in Fig. 10 for four different values of the reduced velocity, along with the spectral content of the time history of
12
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Fig. 8. Flow past two freely vibrating cylinders in tandem at (Re, ρ∗) = (200, 2.546): time evolution of the vertical displacement of the cylinders
or different values of U∗; a: U∗

= 3; b: U∗
= 4; c: U∗

= 5; d: U∗
= 7. The inset in the lower-left corner of each figure provides a zoom-in of the

egion delimited by the black rectangle.

he vertical separation ∆y between the centers of the two cylinders. For low values of the reduced velocity, the cylinders
re found to oscillate in phase with small amplitudes, indicating that we are still outside the lock-in regime. For U∗

= 3
see Fig. 10a), the phase difference between the front and rear cylinders is small, with the rear one exhibiting somewhat
arger displacements. When the reduced velocity is increased to U∗

= 4, the dynamic response of the system changes
onsiderably as the cylinders enter the lock-in regime, oscillating out-of-phase at a higher frequency and with the front
ylinder now exhibiting wider oscillations. As the velocity is further increased to U∗

= 5, a change in the behavior of the
ystem is observed again since the rear cylinder now oscillates with larger relative amplitude, while the vertical separation
etween the cylinders undergoes oscillations with a periodic amplitude modulation that closely resembles a beating
otion. This observation is confirmed by looking at the frequency content in Fig. 10c, which shows two main peaks having
imilar frequencies. In a linear system, the superposition of these two harmonics would result in a beating frequency, given
y fb = |f2 − f1|, and a corresponding period of about 97 time units, which is very close to the characterizing period of
he oscillations of both cylinders. This beating phenomenon disappears by further increasing the reduced velocity as the
requency of vibration diminishes. It is interesting to notice that Borazjani & Sotiropoulos identified U∗

= 5 as the critical
state of the system at Re = 200, delimiting the transition from state 1 to state 2.

3.3.1. Global stability
In this section, we investigate the interaction between the fluid and the two elastically mounted cylinders in tandem

through a global linear stability analysis, to further ascertain the validity and robustness of the proposed methodology.
The computations were performed on the same grid used to conduct the flow analysis presented in the previous

section. Given the low value of the density ratio ρ∗, the results of the nonlinear simulations obtained with a weak coupling
of the fluid and solid dynamics were compared with those obtained via a strong coupling. Even though the two procedures
exhibited very similar results, the iterative procedure provided more accurate results with a reduced number of Arnoldi
13
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Fig. 9. Variation with the reduced velocity U∗ of the maximum non-dimensional displacement A∗

MAX of two identical cylinders in tandem (L = 1.5)
t Re = 200 (a) and Re = 100 (b). Squares: front cylinder; circles: rear cylinder. The present results for Re = 200 are compared with the ones from
orazjani and Sotiropoulos (2009) and Griffith et al. (2017). Dotted line: the simulations were initialized from an instantaneous snapshot of the
olution for a smaller value of U∗ .

Fig. 10. Flow past two freely vibrating cylinders in tandem arrangement at (Re, ρ∗) = (100, 2.546): time evolution of the vertical displacement of
the cylinders for different values of U∗; a: U∗

= 3; b: U∗
= 4; c: U∗

= 5; d: U∗
= 7. The inset in the lower-left corner of each figure shows the

ime history of the vertical distance ∆y between the cylinders for the time interval marked by the black rectangle. On the right, it is reported the
ingle-sided amplitude spectrum of ∆y.
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Fig. 11. Spatial distribution of the vorticity for the real (a) and imaginary (b) parts of the unstable eigenmode for the flow past two fixed cylinders
in tandem arrangement at Re = 100.

iterations for the stability calculations. The fixed time-step size was chosen in order to keep the CFL number under the
0.4 value.

As in the case of the single cylinder, the linear stability analysis of the fluid alone predicts the existence of an unstable
eigenvalue ωs = 0.0404+0.7907i associated with the vortex shedding in the wake of the two cylinders. In the following,
we refer to this eigenvalue as the stationary wake mode. The corresponding eigenmode (see Fig. 11) closely resembles the
unstable eigenmode of the single cylinder case. This observation is consistent with results from literature asserting that,
for small streamwise spacings, the two cylinders shed like a single body (Papaioannou et al., 2006).

When the cylinders are free to move in the cross-stream direction, the LSA identifies the presence of an additional
eigenmode for the range of parameters considered. In Fig. 12, the two least stable eigenvalues are tracked over a wide
range of reduced velocities, in an attempt to identify the mechanisms responsible for the lock-in regime and for the
change of behavior that occurs around U∗

= 5. It is observed that, for the lower values of U∗, the two leading modes
re quite distinct, with the frequency of the first mode (represented by blue dots in Figs. 12(b) and 12(d)) being close
o the frequency of the stationary wake mode, fsD/U∞ = 0.1258. Conversely, the frequency associated with the second
mode (red dots in Figs. 12(b) and 12(d)) is slightly smaller than the natural frequency of the cylinders for values of the
reduced velocity up to U∗

= 7, where the frequencies of the two modes are almost coincident and remarkably close to
that of the limit cycle shown in Fig. 10(d). Therefore, for the lower values of U∗, we associate the first mode with the wake
instability and the second one with the structural mode. For U∗

= 5 the two modes show comparable growth rates and
close frequencies, flagging an interaction that is visible in the nonlinear evolution as well. The peak frequencies revealed
by the amplitude spectrum on the right side of Fig. 10(c) are, indeed, quite close to the frequencies of the leading modes at
U∗

= 5 reported in Fig. 12(d). After the crossing of the two modes, both frequencies remain close to that of the stationary
wake mode for all U∗, and a classification of the modes as fluid mode and structural mode is not possible.

For values of the reduced velocity lower than U∗
= 4, the mode associated with the structure is still stable. This finding

is coherent with the small amplitude of oscillation observed in the calculations. Then, at the critical value U∗
= 5, the

growth rate of mode 2 surpasses that of mode 1, possibly explaining the transition from state 1 to state 2 and the greater
amplitudes of vibration observed in the nonlinear simulations. In an attempt to shed further light on this phenomenon, we
report in Figs. 12(a) and 12(c) the growth rate and the frequency, respectively, of the two least stable modes for the same
tandem arrangement when only the rear cylinder is free to move. For this configuration, we find that the growth rate
of the unstable mode increases considerably for U∗

≥ 5, while the growth rate of the stable mode attains its maximum
value.

These results indicate that the mechanism responsible for the large amplitude oscillations is already present in this
fixed-free case. The temporal evolution of the flow starting from the base state shows that, for all the values of the reduced
velocity, a regular vortex street excites the oscillation of both cylinders, with the rear one undergoing larger vibrations.
This is due to the fact that vortices are initially shed only from the rear cylinder, which thus experiences a greater pressure
difference. The outcome is coherent with the observations of Borazjani and Sotiropoulos (2009), who suggest that it is the
vortex-shedding in the wake that initiates the excitation of the system and subsequently generates a vertical separation
between the cylinders. When this separation becomes large enough, other interaction mechanisms come into play and
give rise to different dynamical states.

There is, however, another point to address which is the passage from state 2 to state 1 that is observed when changing
the value of U∗ from U∗

= 3 to U∗
= 4 and the switch from state 1 to state 2 that occurs at U∗

= 5. To investigate this
phenomenon, we have reported in Fig. 13a the early transient of the time history of the vertical displacement of the
cylinders for U∗

= 4. It is clearly visible that the cylinders oscillate almost in phase, with a low amplitude of vibration
as in the case U∗

= 3 (Fig. 13b) and the rear cylinder exhibits larger oscillations, following the characteristics of the first
mode. The temporal evolution shows that the growth of the first mode saturates as the oscillations approach a limit cycle
with small amplitude. Later, the cylinders lose their synchronization owing to the emergence of the second mode. The
greater amplitude of vibration of the front cylinder, however, cannot be explained with linear arguments. For U∗ > 5, the
dynamics of the linearized system is governed by the second mode, characterized by the counter-phase oscillation of the
cylinders, with the rear one undergoing larger vibrations.

Fig. 14 shows the vorticity fields of the two unstable eigenmodes related to the eigenvalues reported in Fig. 12, for
three different values of the reduced velocity. Again, for U∗

= 4, mode 1 resembles the stationary wake mode of Fig. 11
but departs from it for the higher values of U∗. On the other hand, the shape of mode 2 also changes when the reduced
velocity is increased from U∗

= 4 to U∗
= 5, while a further increase in the value of U∗ produces a shift upstream of the
high vorticity region.
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Fig. 12. Results of the LSA for the flow around two elastically-mounted cylinders in tandem at Re = 100. Evolution with U∗ of the growth rate λ

and the Strouhal number St of the two least stable modes. Fig. (a, c): only the rear cylinder is free to oscillate; fig. (b, d): both cylinders are free
to move. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Time evolution of the vertical displacement of two freely vibrating cylinders in tandem arrangement at (Re, ρ∗) = (100, 2.546) for U∗
= 4

a) and U∗
= 3 (b).

. Summary and conclusions

The role played by linear effects in the loss of stability of a fluid–structure system has motivated researchers to develop
ew techniques to perform linear stability analyses of coupled FSI problems.
In this paper, we propose a method that extends Chiba’s approach (Chiba, 1998) to study the coupled dynamics of

low-structure systems. A time-stepping iterative procedure, based on the exponential transformation of the Jacobian
atrix, was derived in a general setting. This was implemented within an existing immersed boundary solver and
16
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Fig. 14. Flow past two spring-mounted circular cylinders in tandem arrangement at Re = 100. Spatial distribution of the vorticity of the real part
of mode 1 (a, c, e) and mode 2 (b, d, f ) for U∗

= 4 (a, b), U∗
= 5 (c, d) and U∗

= 6 (e, f ).

validated against well-documented cases of flow-induced vibrations of rigid bodies. The outcomes of the linear stability
analysis showed a good overall agreement with the results from the literature, obtained using mesh-conforming methods.
Future developments of the method could include a local grid refinement to achieve a higher resolution near the
immersed surface at a lower cost (Vanella et al., 2010). The validation tests were limited to the case of rigid-body motion,
nevertheless, it is straightforward to extend the range of applicability of the method to deformable structures.

The matrix-free nature of the algorithm makes it particularly convenient for the analysis of three-dimensional flows
around structures with complex geometries, where an analytical linearization of the coupled systems of equations would
be impracticable. Moreover, the Cartesian grid employed within the IB framework facilitates the parallelization of the
numerical scheme, which is an essential feature for solving three-dimensional problems within a reasonable time.

In Section 3.3, the method was tested on the case of two oscillating cylinders in tandem; the results of the stability
analysis matched reasonably well with the nonlinear simulations, providing further confidence in the robustness of the
method and opening the way to the instability analysis of multi-body configurations. Two dominant modes were identified
across the range 3 ≤ U∗

≤ 14. For values of the reduced velocity U∗ < 4, only one mode is unstable and the cylinders
oscillate out of lock-in. At U∗

= 4 the second mode loses its stability and the cylinders enter the lock-in zone, then for
U∗

= 5 the modes cross and their interaction gives rise to the beating phenomenon observed in the nonlinear simulations.
For U∗ > 5 the growth rate of the dominant mode is significantly greater than that of the other one, justifying the higher
amplitude of vibration observed in the calculations. The comparison with the linear stability of the fixed-free configuration
shows that the mechanism giving rise to large amplitude oscillations is already present in the latter case, as the growth
rate of the unstable mode grows in a similar fashion for U∗ > 5, while its frequency is always close to that of the
tationary wake mode. This observation implies that the vortex-shedding plays a major role in triggering the vibrations
nd that interference effects between the cylinders come into play only when the vertical separation between the two
ylinders is large enough, as suggested by Borazjani and Sotiropoulos (2009).
One major advantage of the methodology consists of the generality of the formulation, which does not depend on the

pecific time-stepping scheme chosen for integrating the governing equations. Without the pretense of being exhaustive,
n Section 2.3.2, some guidelines were provided for the selection of the linearization parameters, with the purpose to
urnish the reader with the necessary tools to implement the strategy within existing CFD codes.
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ppendix A. Derivation of the Gateaux derivative

In this section, we report further details of the derivation of Eq. (24) presented in Section 2.3.1.
Combining the definitions of F and R(q) given in Section 2, we get

F (q(t0), T ) =

∫ t0+T

t0

R(q(t))dt + q(t0). (A.1)

We now consider the second term on the right-hand side of Eq. (23). Substituting the expression above, it reads

∂F (q, T )
∂q

⏐⏐⏐⏐
qb

q′(t0) =
∂

∂q

⏐⏐⏐⏐
qb

[∫ t0+T

t0

R(q)dt
]
q′(t0) + q′(t0). (A.2)

ecognizing that the extremes of integration do not depend on q and that q′(t0) does not depend on time, we can
nterchange integration and differentiation and bring q′(t0) inside the integral,

∂F (q, T )
∂q

⏐⏐⏐⏐
qb

q′(t0) =

∫ t0+T

t0

∂R(q)
∂q

⏐⏐⏐⏐
qb

q′(t0)dt + q′(t0). (A.3)

upposing then a little variation of q′(t) in the interval [t0, t0 + T ], which is true for small values of T , we have replaced
q′(t0) into the integral with q′(t).∫ t0+T

t0

∂R(q)
∂q

⏐⏐⏐⏐
qb

q′(t0)dt ≈

∫ t0+T

t0

J (qb)q
′(t)dt. (A.4)

Finally, we recognize that (A.4) is simply the integration of the initial value problem given by Eq. (17), and therefore

∂F (q, T )
∂q

⏐⏐⏐⏐
qb

q′(t0) ≈ q′(t0 + T ) − q′(t0). (A.5)

Appendix B. Grid convergence tests

To assess the grid and domain convergence of the stability results, eigenvalue computations were performed on
different grids for the VIV case presented in Section 3.2, with (ρ∗,U∗) = (20, 7).

Table B.2 reports the growth rate λ and the Strouhal number St of the least stable eigenvalue for four different
discretizations of the same domain of size [−28D : 52D] × [−28D : 28D], with the origin placed on the cylinder axis. On
the rightmost column, it is reported the percentage error e%j made in computing the eigenvalue ωj, as the finest grid is
taken as reference,

e%j =
|ωj − ωref |

|ωref |
× 100. (B.1)

Table B.3 reports the growth rate and the non-dimensional frequency of both the fluid and elastic modes for three
distinct domains. The corresponding grids are coincident in the uniformly spaced rectangular zone around the cylinder,
the minimum spacing being equal to ∆xmin = 0.022. In particular, the grid used for the medium domain D2 corresponds
to grid 2 in Table B.2. The analysis shows a minor difference between the medium and big domains, thus motivating the
choice of D2 as the computational domain for the cases presented in Section 3.2. The blockage ratio reported in Table B.3
is defined as the ratio of the cylinder diameter to the cross-stream dimension of the computational domain.

Appendix C. Effect of the linearization parameter ϵ0

To evaluate the influence of the user-defined linearization parameter ϵ0 on the accuracy of the results, we report in
Fig. C.1 the variation of the relative error er and the residual ∥r∥ of the least stable Ritz pair against ϵ0. The former is
iven by

er =
|ω − ωref |

|ωref |
, (C.1)

where ω is the least stable eigenvalue computed for a given value of ϵ0 on the chosen grid and ωref is a reference value.
In the absence of an exact solution of the EVP, the selected ωref is the least stable eigenvalue computed on a reference
grid with the parameter ϵ0 chosen so as to minimize the residual ∥r∥. The results displayed in Fig. C.1 refer to the VIV
case introduced in Section 3.2 with (Re, ρ∗,U∗) = (60, 20, 7).
18
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Table B.2
Convergence study with respect to grid resolution. For each of the four grids, the total
number of cells Nc and the minimum cell dimension ∆xmin are reported, together with
the growth rate λ and the Strouhal number St of the least stable mode for (Re, ρ∗,U∗) =

(60, 20, 7). Grid 2 was used to obtain the results presented throughout the manuscript,
while the relative error e% is computed with respect to the values obtained with grid 4.
Grid Nc ∆xmin λ St e%
1 310800 0.0286 0.0427 0.1205 0.662
2 513000 0.0220 0.0447 0.1210 0.221
3 765600 0.0182 0.0448 0.1211 0.106
4 1068600 0.0154 0.0447 0.1213 –

Table B.3
Sensitivity of the rightmost eigenvalues to the size of the computational domain for
(Re, ρ∗,U∗) = (60, 20, 7). D1: [−35 : 65] × [−35 : 35], D2: [−28 : 52] × [−28 : 28],
D3: [−21 : 39] × [−21 : 21]. All the grids used for the analysis have the same minimum
cell dimension ∆xmin . The percentage blockage ratio is reported for each domain size.

D1 D2 D3
1.43% 1.78% 2.38%

λr St λr St λr St

FM 0.0440 0.1206 0.0447 0.1210 0.0461 0.1219
EM 0.0086 0.1309 0.0085 0.1309 0.0080 0.1308

Fig. C.1. Effect of the input parameter ϵ0 on the relative error (a) and direct residual (b) for the VIV case reported in Section 3.2 with the following
et of parameters (ρ∗

= 20, Re = 60, U∗
= 7). Results are reported for two different grids (see Table B.2 for details), the relative error is computed

ith respect to the finest grid in Table B.2.
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