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A Practical Review on Linear
and Nonlinear Global
Approaches to Flow Instabilities
This paper aims at reviewing linear and nonlinear approaches to study the stability of
fluid flows. We provide a concise but self-contained exposition of the main concepts and
specific numerical methods designed for global stability studies, including the classical
linear stability analysis, the adjoint-based sensitivity, and the most recent nonlinear
developments. Regarding numerical implementation, a number of ideas making resolu-
tion particularly efficient are discussed, including mesh adaptation, simple shift-invert
strategy instead of the classical Arnoldi algorithm, and a simplification of the recent non-
linear self-consistent (SC) approach proposed by Mantič-Lugo et al. (2014, “Self-
Consistent Mean Flow Description of the Nonlinear Saturation of the Vortex Shedding in
the Cylinder Wake,” Phys. Rev. Lett., 113(8), p. 084501). An open-source software imple-
menting all the concepts discussed in this paper is provided. The software is demon-
strated for the reference case of the two-dimensional (2D) flow around a circular
cylinder, in both incompressible and compressible cases, but is easily customizable to a
variety of other flow configurations or flow equations. [DOI: 10.1115/1.4042737]

1 Introduction

The concept of stability bears on the response of a system to
small perturbations of its state. If the generic disturbance grows in
time, the system is unstable. The concept of stability can be sim-
ply formulated for a system of ordinary differential equations.
Such systems can be at equilibrium, where the state does not
depend on time, or can present a periodic state, with all compo-
nents returning to the same values, after every period.

The stability of fluid flows usually depends on the value of a
given parameter. A bifurcation occurs when a critical value is

reached and the original solution becomes linearly unstable, the
system then starts evolving toward a new state, either steady
or unsteady. In the second part of the 19th century, specific analyt-
ical and numerical methods have emerged to study these bifurca-
tions and have continuously evolved up to the present days. A
crucial point, that drove the development in this field, is the avail-
ability of significantly increasing and improving computing
resources. Initially, the linear stability theory focused on plane
parallel flows, e.g., plane Poiseuille flow [1]. In this case, thanks
to the Fourier decomposition in the two homogeneous directions,
it is possible to reduce the stability problem to a one-dimensional
problem, an approach usually referred to as local stability
approach. On the other hand, when there are at least two spatial
variables, the class of methods suited to solve such problems is
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generally called global stability approaches. A classic example of
such behavior in fluid dynamics is the instability occurring in the
wake of a circular cylinder. At low Reynolds number (precisely
for Re< 46.7), the flow is steady and symmetric, but for larger
values of Re, a global instability arises in the flow field leading to
the well-known von K�arm�an vortex alley. This flow configuration
has served as a benchmark in the development of this class of
methods. If one is only interested in predicting whether a flow is
stable, it is sufficient to conduct a linear stability analysis which
is the fundamental brick of global stability approaches. Beyond
this simple question, in the past two decades, a number of exten-
sions have been developed and popularized. Adjoint methods are
an important extension [2,3]; they can give insight into the sensi-
tivity of the flow to intrinsic or extrinsic contributions. Nonlinear
stability approaches [4,5] have also been developed in order to
extend the range of applicability of the numerical methods toward
large amplitude perturbations. A number of review papers have
already been published on such approach [6,7] but most have
restricted to an exposition of the theoretical concepts without pro-
viding programs. Simple MATLAB programs have been published
by Schmid and Brandt [8] for local analysis of plane parallel
flows, but we are not aware of a publication of programs for
global analysis.

The objective of this work is to contribute to the popularization
of such methods in two ways:

� First, we give a concise but self-contained exposition of
the main concepts and specific numerical methods pertaining
to global stability, including basic linear stability, adjoint-
based sensitivity, as well as the most recent nonlinear
developments.

� Second, we offer an open-source and user-friendly software
called STABFEM

1 to perform such calculations. The software
combines programs written in both FREEFEMþþ [9] and
OCTAVE/MATLAB languages. FREEFEMþþ is used to generate and
adapt meshes and to solve the various linear problems arising
in the analysis. OCTAVE/MATLAB is used as a driver/wrapper to
monitor the computations, perform the required loops over
parameters, and postprocess the results. The software is
developed as a collaborative project; it aims a multiplatform
support and is easily customizable to a variety of cases.

In this paper, the concepts are introduced, and the software is
demonstrated for the reference case of the incompressible, two-
dimensional (2D) flow around a cylinder, but the software is eas-
ily customizable to a variety of other situations (free-surface,
three-dimensional (3D), etc.). We show also the application to
compressible flows for the same geometrical configuration.

Although we do not claim inventing any radically new method,
our exposition and implementation contains a number of novelties
making the computation particularly efficient in terms of compu-
tational time and memory.2 The most notable originalities are the
systematic use of mesh adaptation (Secs. 2 and 3), the use of sim-
ple shift-invert instead of Arnoldi (Sec. 3), and a reformulation
and simplification of the self-consistent (SC) approach of Mantič-
Lugo in the framework of the harmonic balance formalism
(Sec. 4).

2 Linear Stability Analysis: Equations and Methods

2.1 Computing a Base-Flow With Newton Iteration. In this
part, we expose the main concepts and methods of linear stability

analysis for the case of an incompressible flow. The extension to
compressible flow will be considered in Sec. 4.

2.1.1 Navier–Stokes Equations and Weak Form. We start
from the general problem of a flow field [u, p] satisfying the
incompressible Navier–Stokes equations on a domain X

@t u; p½ � ¼ N S u; p½ �ð Þ � �u � ru�rpþ 2

Re
r � D uð Þ (1)

r � u ¼ 0 (2)

with suitable boundary conditions on the frontier @X of the
domain. Here, DðuÞ is the rate-of-strain tensor defined as

DðuÞ ¼ 1=2ðruþruTÞ

In the framework of finite element methods, we need to write
the equations in weak form. Prior to this, we define a scalar prod-
uct as follows, for both scalar or vectorial quantities:

h/1;/2i

h/1;/2i ¼
ð

X
/1 � /2 dX

The weak form of the Navier–Stokes equations is readily defined
by introducing test functions [v, q] associated with momentum
and continuity equations, and by integrating over the domain3

8½v; q�; @thv; ui ¼ hv;N Sðu; pÞi þ hq;r � ui (3)

2.1.2 Newton Iteration. We look for a steady base-flow
[ub, pb] satisfying the steady Navier–Stokes equations, i.e.,
N Sðub; pbÞ ¼ 0. Suppose that we have a guess for the base flow

½ug
b; p

g
b� which almost satisfies the equations. We look for a better

approximation under the form

½ub; pb� ¼ ½ug
b; p

g
b� þ ½dub; dpb� (4)

Injecting Eq. (4) into the weak form (4) of the Navier–Stokes
equations and linearizing leads to N Sðug

b; p
g
bÞ þ LNSu

g
b
ðdub; dpbÞ

¼ 0, which can also be written in weak form as

hv;N Sðug
b; p

g
bÞi þ hq;r � u

g
biþ hv;LNSu

g
b
ðdub; dpbÞi

þ hq;r � dubi ¼ 0
(5)

where LNS is the linearized Navier–Stokes operator, defined by
its action on the field [u, p] as follows:

LNSU u; pð Þ ¼ �C U; uð Þ � rpþ 2

Re
r � D uð Þ (6)

and C is the convection operator defined by

CðU;uÞ ¼ ðU � rÞuþ ðu � rÞU (7)

In the framework of finite elements, this problem can now be
discretized by projecting upon a basis of Taylor–Hood (u, v, p)!
(P2, P2, P1) elements. Noting dX the discretization of [dub, dpb]
this eventually leads to a matricial problem of the form A � dX¼ Y.
The procedure of Newton iteration is to solve iteratively this set
of equations up to convergence. In our implementation, the algo-
rithm for a 2D incompressible flow is written in the FREEFEMþþ
solver Newton_2D.edp (an extract of this code featuring the

1The stabfem software may be obtained at the following url: https://
www.gitlab.com/stabfem/StabFem

2Most of the figures contained in this paper can be processed by launching a
single OCTAVE/MATLAB script available on the website of the project. An html version
of this program (with enclosed figures) is available here: https://stabfem.gitlab.
io/StabFem/cases/cylinder/SCRIPT_CYLINDER_ALLFIGURES.html. On a
MacbookPro (2018, 2.5 GHz, 16 GB RAM) in single-core sequential execution,
and using mesh M2 as described in Appendix B, the execution time is 203 s for the
linear analysis (Sec. 3), and 413 s for the nonlinear analysis.

3In the simple presentation given here, we have omitted the issue of boundary
conditions. Details on how to incorporate boundary conditions in the weak
formulation through integration by parts can be found in Appendix D.
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implementation of the Newton loop is given in Appendix E). This
FREEFEMþþ solver is wrapped by the OCTAVE/MATLAB driver
SF_BaseFlow.m.

2.2 Linear Stability

2.2.1 Direct Eigenvalue Problem. We study the onset of the
instability within the linear theory considering perturbations with
eigenmode form

uðx; tÞ ¼ ubðxÞ þ eûðxÞekt; pðx; tÞ ¼ pbðxÞ þ ep̂ðxÞekt (8)

where k¼ rþ ix is the eigenvalue, r the amplification rate, x the
oscillation rate, û; p̂ the eigenmode (also called direct eigenmode,
as opposed to the adjoint eigenmode introduced below), and e a
small parameter. The eigenmodes and eigenvalues are the solution
of the following eigenproblem:

kû ¼ LNSub
ðû; p̂Þ (9)

or, in weak form

khv; ûi ¼ hv;LNSub
ðû; p̂Þi þ hq;r � ûi (10)

After discretization, we end up with an eigenvalue problem with
the matricial form

kBX̂ ¼ AX̂ (11)

where A is the matrix resulting from the discretization of LNSub
,

i.e., the same matrix appearing in the Newton computation of the
base flow, and B is a weight matrix associated with the scalar
product hv; ui ¼

Ð
v � u dX.

2.2.2 Adjoint Eigenvalue Problem, Structural Sensitivity and
Wavemaker Characterization. Developed in the two past decades,
the concept of adjoint eigenmodes has now become an unavoid-
able complement to the linear global stability approach. We here
give a short summary of the definition and usefulness of this con-
cept and refer the reader to Luchini and Bottaro [7] for further
details.

First of all, the adjoint linearized Navier–Stokes operator
LNS†

is defined thanks to the following property:

8ðu; p; v; qÞ; hLNS†

Uðv; qÞ; ui þ hr � v; pi
¼ hv;LNSUðu; pÞi þ hq;r � ui (12)

We can then define the adjoint eigenvalues and eigenmodes as the
solution of the eigenvalue problem

8ðu; pÞ; k†hv̂;ui ¼ hLNS†

Uðv̂; q̂Þ;ui þ hr � v̂; pi (13)

It can be shown [10] that the adjoint eigenvalues k
†

k are the com-
plex conjugates of the direct eigenvalues kk.

Although the concept of adjoint operator may sound compli-
cated, the resolution of the adjoint problem using finite elements
methods is actually extremely easy. Indeed, as the scalar product
used in the definition of the weak formulation (3) and of the
adjoint (13) is the same, the weak formulations of both problems
happen to be identical when swapping the test and the unknown
functions. Therefore, the matricial form of the discretized version
of Eq. (13) is deduced from the one of the direct problem by a
simple (Hermitian) transpose of the matrix

k
†
BX̂

† ¼ ATX̂
†

(14)

The adjoint field is a powerful tool for investigating problems such
as receptivity, transient growth, control, and sensitivity (see the
reviews of Refs. [11], [12], and [7]). The simplest physical

interpretation of an adjoint eigenmode is as follows: it corresponds
to the initial condition which has maximum projection along the
direction of the corresponding eigenmode. Thus, the adjoint of the
most amplified mode corresponds to the optimal perturbation
which will maximize the growth of energy in the limit of large
time. In effect, one can prove that for t!1 the asymptotic behav-
ior of a solution with initial condition ui is given as

u tð Þ � hû
†;uii
hû†; ûi

ektû

The choice ui ¼ û† is the initial condition of norm unity which
maximizes the first factor in this expression.

Investigating the structure of the adjoint eigenmodes gives
access to a number of information about the instability mechanism
which are not visible when examining only the direct eigenmodes.
First, a simple examination of the dissimilarity between direct and
adjoint eigenmodes is an indication of the non-normality of the
linear operator, mostly associated with the convection term in
open flows [11]. Second, in a more elaborated way, the product
of both fields allows defining the so-called structural sensitivity
tensor defined as

S xð Þ ¼ û† � û

hû†; ûi
(15)

As formalized by Giannetti and Luchini [2] (following ideas
previously proposed by Hill [13]), this metrics quantifies how an
eigenvalue is affected by the introduction of localized feedback of
a flow perturbation onto itself. It thereby indicates the spatial
regions where closed-loop control using a localized feedback will
be most efficient. Giannetti and Luchini [2] conjectured that
regions where such an extrinsic feedback induces the strongest
change of the eigenvalue are also the most significant regions con-
sidering the intrinsic feedback mechanisms that underpin the gen-
uine eigenmode dynamics. Following this idea, structural
sensitivity has thus become a popular way to characterize the
wavemaker region from where the instability mechanism origi-
nates. The structural sensitivity being a tensor, it is convenient to
simply represent its norm Sw, often called the “wavemaker”

Sw xð Þ ¼ jjS xð Þjj1 �
jjû†

xð Þjj jjû xð Þjj
hû†; ûi

(16)

2.2.3 Iterative Methods for Eigenvalue Computations. The
numerical resolution of generalized eigenvalue problems such as
AX¼ kBX (or its adjoint version (14)), can be performed using
several methods. Direct methods to compute the whole spectrum
are both costly prohibitive and their usefulness is disputable. A
popular alternative is the use of iterative methods to compute a
limited set of eigenvalues located in the vicinity of a shift value
kshift. The simplest version of this method is the simple shift-
invert iteration which consists in solving iteratively the system

Xn ¼ ðA� kshiftBÞ�1BXn�1

It is easy to show that this iterative procedure quickly asymptotes

to Xnþ1 � ðk	�1ÞnX̂ where X̂ is the eigenmode with largest k	�1

(i.e., the one with eigenvalue k closest to the shift).
When a good estimation of the eigenvalue is available, this

method is very efficient and converges very rapidly. On the other
hand, it can only provide a single eigenvalue. If we want to com-
pute a larger number of eigenvalues, we can revert to a general-
ized version of iterative methods, called Arnoldi methods [14].
The shift-invert version of the Arnoldi method is in fact the most
commonly used method of the current time and is at the basis of
both the popular OCTAVE/MATLAB function eigs and the standard
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eigenvalue solver of FreeFem (i.e., ARPACKþþ). For the case of
the 2D incompressible flow, resolution of the eigenvalue problem
is done by the FREEFEMþþ solver Stab2D.edp; an excerpt of this
solver featuring the implementation of the shift-invert algorithm
is displayed in Appendix E. The latter is wrapped by the OCTAVE/
MATLAB driver SF_Stability.m which accepts a number of
optional parameters. For instance, the selection between shift-
invert and Arnoldi is made according to the parameter nev (i.e.,
number of requested eigenvalues) transmitted to the driver. (an
excerpt of this code featuring the implementation of the Newton
loop is given in Appendix E).

2.3 Mesh Adaptation Procedure. As for any numerical
method, a crucial aspect for numerical efficiency is the design of
the mesh. The finite element method allows using unstructured
mesh and hence to have a local adaptation. The most common
procedure is to decompose the domain into several parts with dif-
ferent grid densities; for instance for the wake of a cylinder, we
will design a near-wall region with very small size, a wake region
with intermediate mesh size, and an outer region with large mesh
size. The drawback of such mesh generation guidelines is that the
design relies on an a priori expectation of the regions where gra-
dients will be large.

In our implementation, we use an automated mesh adaptation
method. The implementation relies on the AdaptMesh procedure
of the FREEFEMþþ software. This procedure is detailed in Ref. [15].
In short, the classical Delaunay–Voronoi algorithm produces a
mesh with gridpoint distribution specified by a Metric matrix M.
The AdaptMesh algorithm consists in using as a metric the Hes-
sian (second-order spatial derivatives) of an objective function uh

defined over the domain, i.e., M ¼ rruh. The precision can be
controlled by specifying an objective value for the interpolation
error of the function on the new mesh.

To build an optimal mesh for the base-flow calculation, the idea
is to use as the objective function uh the solution ub itself, as com-
puted on a previous mesh. The base flow is then recomputed on
the adapted mesh, providing a better approximation of the solu-
tion. The procedure can be repeated over a few steps to ensure a
right convergence.

The mesh generated in the previous way may not be optimal for
the stability calculations as the structure of the eigenmode may be
more complex than that of the base flow. To remedy with this, the
idea is to subsequently adapt the mesh to both the mesh flow and
the results of the stability calculation. This is easily done with
FreeFem, as the AdaptMesh procedure can be used with several
objective functions. We have experimented four different strat-
egies. The first (D strategy) is to adapt the mesh to the base flow
and the structure of the leading direct eigenmode. A second strat-
egy (A) is to use the adjoint mode instead of the direct mode for
mesh adaptation. However, as the sensitivity of the eigenvalue to
perturbations of the operator (including discretization errors) is
more closely linked to structural sensitivity concepts, it sounds a
better idea to use the “wavemaker” Sw to adapt the mesh, leading
to the last experimented strategy, called S. Mesh adaptation using
the scalar product of the direct and adjoint eigenmodes (called E-
strategy) was also proposed in Ref. [16] (this quantity has also
been discussed by Marquet and Lesshafft [17]). A detailed com-
parison of the four strategies is reported in Appendix A. It is
shown that for the case of a cylinder, all strategies give the same
values for base-flow drag, eigenvalues, and several properties of
the nonlinear limit cycle (see Sec. 4) with less than 0, 3% devia-
tion, but that the A, E, and especially the S strategy lead to signifi-
cantly lower number of grid points compared to the D strategy.
Note that a valid alternative (not yet available in the STABFEM pro-
ject) is offered by the error sensitivity to refinement recently pro-
posed by Luchini et al. [18].

In our implementation, the whole process of mesh adaptation
(including projection and recomputation of the base flow on
the new mesh) is monitored using the OCTAVE/MATLAB driver
SF_AdaptMesh.m; the kind of adaptation (to base flow only

(BF), or D, A, S, E strategies) is decided by the nature of the
objects given as input to this function. In the current implementa-
tion, it is possible to adapt the mesh to as much as eight fields of
diverse nature (for instance, multiple eigenmodes along with their
adjoint fields, harmonic-balance Fourier components, etc.).

3 Illustration for the Wake of a Cylinder

(Incompressible Case)

3.1 Problem Description. Here, we consider the two-
dimensional flow of an incompressible fluid of density q past a
circular cylinder. All flow quantities are normalized using the uni-
form incoming velocity U1 and the cylinder diameter D, which
are the characteristic velocity and length scales used for the defini-
tion of the Reynolds number Re¼U1D/�. The origin of the
Cartesian frame of reference is considered located on the cylinder
axis, the x-axis is chosen to be parallel to the incoming free-
stream velocity, while the y-axis with the cross-stream velocity.
The dimensions of the computational domain are the following:
�40
 x/D
 80 and 0
 y/D
 40 (boundary conditions and their
implementation are detailed in Appendix D). Note that we take
advantage of the symmetry properties of the problem to only solve
it on the positive y half-domain.

The hydrodynamic loads can be obtained by integrating the
stress tensor over the cylinder surface. In particular, the hydrody-
namic lift and drag forces read4

Fx ¼ DRe u; pð Þ �
ð

Ccyl

�pnþ 2

Re
D uð Þ � n

� �
� exd‘ (17)

Fy ¼ LRe u; pð Þ �
ð

Ccyl

�pnþ 2

Re
D uð Þ � n

� �
� eyd‘ (18)

where Ccyl is the boundary of the cylinder.

3.2 Mesh Adaptation Procedure. Let us now consider the
OCTAVE/MATLAB code reported in Fig. 1. First, we build an initial
mesh (line 1), and compute base flow solutions for increasing val-
ues of the Reynolds number up to Re¼ 60 (lines 2–5). Then, we
perform the mesh adaptation with S strategy, as explained previ-
ously (lines 6–7). The resulting mesh, depicted in Fig. 2, is used
for the rest of the computations presented in this paper (except for
plotting the structure of the direct eigenmode in Fig. 6(a) and
computing the energy of the nonlinear perturbation displayed in
Fig. 11(d) which adopted a finer mesh obtained with the strategy
D). Appendix A presents additional tests regarding mesh conver-
gence and demonstrates that results obtained with the resulting
mesh are reliable within 0.3% accuracy tolerance for the eigen-
value. It must be emphasized that the mesh generated through this
adaptation process is very light, with only 2048 vertices, which is
significantly less than reported in previous works (for instance, in
their mesh convergence studies, [4] and [5] used, respectively,
190,868 and 6731 vertices).

3.3 Base Flow. Having thus produced a convenient mesh, we
can now illustrate the properties of the base flow as a function of
Reynolds number. Figure 1 shows how to compute and plot with
STABFEM the two most commonly studied quantities, namely the
recirculation length Lx(Re), i.e., the location of the stagnation
point at the rear of the recirculation region, and the drag force
Fx(Re). Note that the object bf is defined as a structure with fields
Fx and Lx. The resulting plots are given in Fig. 3, and are in good

4Note that Fx and Fy are actually nondimensional forces per unit length. For a
cylinder of diameter D and length L (assuming L�D so that the assumption of 2D
flow makes sense), the corresponding dimensional forces are F	x ¼ qU2

1DLFx and
F	y ¼ qU2

1DLFy . Alternatively, one may characterize the forces through the drag
and lift coefficients Cx and Cy. With the usual convention, The connection between
the nondimensional forces and the force coefficients is Cx¼ 2Fx; Cy¼ 2Fy.
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Fig. 1 Illustration of the usage of the STABFEM software to produce an adapted mesh and study the base
flow and the linear stability properties of the wake flow around a cylinder (extracted from script
SCRIPT_CYLINDER_ALLFIGURES.m)

Fig. 2 Illustration of the stucture of mesh M2 (adapted to both the base flow and structural sensitivity)

Fig. 3 Recirculation length Lx (a) and nondimensional drag Fx (b) of the base flow over a cylinder as function of Re
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agreement with known results for this classical problem. In partic-
ular, for low Reynolds, the recirculation Lx(Re) is equal to 0.5
(which is the radius of the cylinder) indicating the absence of a
recirculation region. The latter appears for Re> 4.8, in accord-
ance with known results.

An illustration of the structure of the base flow is given in
Fig. 4, for the case Re¼ 60. This figure is obtained using the
MATLAB/OCTAVE function SF_Plot.m, which is built over the
function ffpdeplot.m developed by Meister and also distributed on
an open-source basis.5 This function provides a number of possi-
bilities for plotting data on unstructured meshes, including color
plots, isolevels, streamlines, quiver plots, etc. The choice of
parameters used here (lines 8–10 of the script in Fig. 1) allows
plotting both the pressure field and selection of streamlines
(through isocontours of the streamfunction w). This representation
allows to easily visualize the extension of the recirculation region.
In accordance with Fig. 3(b), for Re¼ 60 the recirculation length
is Lx � 4.07.

3.4 Linear Stability Results. We investigate the stability of
the base flow field by performing a parametric study of the eigen-
problem (9). In this way, we determine the critical Reynolds num-
ber Rec from which the steady base flow first becomes unstable:
to this end, it is useful to remember that a flow state is linearly
unstable when the real part of the leading eigenvalue, i.e., the
growth rate, is positive. In our implementation, a parametric study
is performed by looping over increasing Reynolds, corresponding
to lines 21–30 of the script in Fig. 1. Note that at line 26 the
options “shift,” “cont,” “guess,” em transmitted to the driver
SF_Stability allow to use an optimum value for the shift
interpolated using the previous computations, and a guess value to
initialize the shift-invert procedure corresponding to the previ-
ously computed eigenmode. Both these ideas very efficiently
accelerate the calculations (the shift-invert procedure typically
converges after only 2–3 iterations).

Figure 5 shows growth rate and the Strouhal number St¼ ax/
2pU1 as a function of the Reynolds number. It is easy to check
that the critical Reynolds number is about 47 for the first mode.
The associated direct eigenmode is depicted in Fig. 6. The spatial
structure of this mode extends downstream of the bluff body and
is characterized by streamwise extended spatial disturbances. On
the other hand, the adjoint mode is highly localized near the cylin-
der on the upper (and lower) side of the body surface. We recall
that the adjoint field provides useful information about the mecha-
nism to flow receptivity to momentum forcing and mass injection.
We note also that this receptivity decays rapidly both upstream
and downstream of the bluff body.

The structural sensitivity Sw introduced in Sec. 2.2 is displayed
in Fig. 7. As discussed in Sec. 2.2, both these quantities allow
identifying the “active” flow regions responsible for the instability

mechanism. The real quantity Sw indicates that the most active
region roughly coincides with the recirculation bubble.

4 Extension: Compressible Flows

The main concepts of global linear stability analysis, exposed
in Sec. 2 for the case of incompressible flows, are directly general-
izable to more complex situations involving compressibility,
fluid–structure interactions, deformable free surfaces, etc. Such
more complex situations can be studied using the same class of
numerical methods and the same methodology. One of the ambi-
tions of the STABFEM software if to provide a unified procedure to
perform such stability studies, so that despite the fact that the
underlying equations may be different, the corresponding OCTAVE/
MATLAB scripts will be almost the same in all cases. In this section,
we will illustrate this point for the case of a compressible flow,
keeping the geometry as a 2D cylinder, and will reproduce the
results of the recent study of Ref. [19].

4.1 Analysis and Implementation. In the compressible case,
the Navier–Stokes equations have to be formulated in terms of a
state-vector [u, p, q, T] with larger dimension. The equations
involve a larger number of terms but can be written in a compact
way as follows:

@tB½u; p; q; T� ¼ NS½u; p; q; T� (19)

Here, B is a “weight” operator specifying the coefficients in front
of the time-derivatives of [u, p, q, T], and the operator
NS½u; p;q;T� specifies the time-evolution of [u, q, T] coming
from the momentum, energy, and mass balances as well as the
state equation linking [p, T, q]. The detailed form of this equation
is given in Ref. [19].

Starting with this form, the two main steps of the analysis,
namely computation of a base-flow and eigenvalue computation,
can be done in the same way as explained in Sec. 2. Namely:

� The base-flow [ub, pb, qb, Tb] is the solution of
NS½ub; pb; qb;Tb� ¼ 0 (Eqs. (4a)–(4d) of Ref. [19]) which
can readily be computed using Newton iteration.

� Eigenvalues k and eigenvalues ½û; p̂; q̂; T̂ � are solutions of

the eigenvalue problem kB½û; p̂; q̂; T̂ �T ¼ LNS½û; p̂; q̂; T̂ �T
(Eqs. (5a)–(5d) of Ref. [19]) which can be solved using
either single-mode shift-invert iteration or multiple-mode
Arnoldi iteration.

In our implementation, these calculations are done by the FREE-

FEMþþ solvers Newton2DComp.edp and Stab2DComp.edp,
which are quite different from their incompressible counterparts.
However, these solvers are wrapped by the same generic drivers
SF_BaseFlow.m and SF_Stability.m. The selection of
which solver to use is made according to the parameters transmit-
ted to them.

4.2 Example: Two-Dimensional Compressible Flow
Around a Cylinder. As an illustration, we consider the compress-
ible flow around a 2D cylinder (same geometry as in Sec. 3). The
reader may find on the website of the project a script6 reproducing
the main results of the study of Ref. [19]. We restrict here to the
illustration of the structure of the unstable eigenmode for
Re¼ 150; M¼ 0.2. Figure 8 shows the axial velocity associated
with the eigenmode in a domain centered on the body. Figure 9
displays the structure of the pressure field on a much larger
domain, allowing to detail the structure of the radiated acoustic
field. The structure is in perfect agreement with the results of Ref.
[19] (see Figs. 6(a) and 9 of this paper). The value of the

Fig. 4 Base flow for the flow over a cylinder at Re 5 60. Pres-
sure field (color or grayscale levels) and streamlines (iso-levels
of the streamfunction w).

5https://github.com/samplemaker/freefem\_matlab\_octave\_plot

6https://gitlab.com/stabfem/StabFem/blob/master/STABLE_CASES/
CompressibleCylinder/SCRIPT_Fani.m
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corresponding eigenvalue is also perfectly reproduced, namely
k¼ 0.15273þ 0.64482i.

5 Nonlinear Global Stability Approaches

In the past decade, efforts have been devoted to extend the
range of validity of global approaches into the nonlinear regime
for Re>Rec, with the double objective of (i) describing the prop-
erties of the limit cycle reached after saturation and (ii) deriving
amplitude equations describing the transient dynamics toward this
cycle. The two main milestones in this direction are the weakly
nonlinear model (WNL) of Sipp and Lebedev [4] and the self-
consistent model of Mantič-Lugo et al. [5]. In this review, we will
only address the first of the two questions, namely the description
of the saturated cycle and leave aside the question of transient
dynamics. We will successively review the two aforementioned
models, in a simplified formulation devoted to describe only the
saturated cycle. We also provide a simple implementation of these
two models. Finally, in line with the Sec. 3, this analysis is

Fig. 5 Growth rate r (a) and Strouhal number St 5 x/2p (b) as function of the Reynolds number

Fig. 6 Contour plot of the streamwise velocity component: (a) (direct) eigenmode and (b) adjoint mode at Re 5 60

Fig. 7 Structural sensitivity Sw for the cylinder’s wake at
Re 5 60. The red line represents the streamline bounding the
recirculation region.

Fig. 8 Structure of the unstable eigenmode (streamwise veloc-
ity component) for the compressible flow around a cylinder
(Re 5 150, M 5 0.2)

Fig. 9 Structure of the unstable eigenmode (pressure compo-
nent) for the compressible flow around a cylinder (Re 5 150,
M 5 0.2). Upper half: real part and lower half: imaginary part.
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illustrated with results obtained for the wake of a cylinder in an
incompressible flow.

In this part, to simplify the notations, we symbolically write the
Navier–Stokes equations as @tu ¼ NSðuÞ, therefore, dropping the
systematic reference to the incompressibility constraint and asso-
ciated pressure field. The same is done with the linearized opera-
tor LNSUðuÞ.

5.1 General Definitions in the Nonlinear Regime. In the
nonlinear regime, the base flow introduced in the linear theory is no
longer relevant, especially when the oscillation amplitudes become
large. Instead, one may define a mean flow by using a time-average

um xð Þ ¼ 1

T

ðT

0

u x; tð Þdt (20)

where T¼ 2p/x is the period of the oscillation cycle. The differ-
ence between the instantaneous solution and the mean flow is then
called the nonlinear perturbation, defined as

u0ðx; tÞ ¼ uðx; tÞ � umðxÞ (21)

A convenient measure of the unsteady part of the flow, which
has been adopted in both the WNL and SC models, is the energy-
amplitude, defined as the square-root of the total energy associ-
ated with the nonlinear perturbation

AE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ðT

0

ð
X
ju0j2 dS

� �
dt

s
(22)

In Secs. 5.2 and 5.3, we will document the predictions of the
WNL and SC models regarding the quantities AE and Lx adopted
in past studies. In addition, we will document two other quantities
of practical interest: the Drag and Lift forces Fx and Fy exerted on
the cylinder. Both are periodic functions of time and, owing to
symmetry consideration, the drag contains only even harmonics
and the lift only odd harmonics

Fx ¼ Fx;0 þ
X1
n¼1

ðFx;2n;c cosð2nxtÞ þ Fx;2n;s sinð2nxtÞÞ (23)

Fy ¼
X1
n¼1

ðFy;2n�1;c cosðð2n� 1ÞxtÞ þ Fy;ð2n�1Þ;s sinðð2n� 1ÞxtÞÞ

(24)

In the sequel, we will focus on the mean drag Fx,0 and on the
fundamental components of the lift Fy,1,c and Fy,1,s. These quanti-
ties are easily retrievable from a numerical simulation or an
experiment, and we will show how they can be predicted from the
nonlinear global approaches.

5.2 The Weakly Nonlinear Model. We first review the
weakly nonlinear model of Sipp and Lebedev [4], also discussed by
Gallaire et al. [20]. The initial derivation of Ref. [4] makes use of a
multiple scales method in order to obtain an amplitude equation.
This complete analysis is reproduced in Appendix B. In the present
paragraph, we give a simplified derivation of this model restricted
to the description of the periodic saturated cycle. The starting point
can be taken as the following expansion of the velocity flow field:

u ¼ ubc þ e½Awnlûeiðxcþe2xeÞt þ c:c:�
þ e2½ue þ jAwnlj2u2;0 þ ðA2

wnlu2;2e2iðxcþe2xeÞt þ c:c:Þ� þ Oðe3Þ
(25)

This expansion is built as an asymptotic expansion in terms of

the small parameter e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Rec � 1=Re

p
corresponding to the

distance to the critical Reynolds number. The zero-order term ubc

is the base flow at the threshold Rec.
In the first-order term, û is the neutral eigenmode at Rec con-

veniently normalized (see discussion in Appendix B), Awnl is an
amplitude which can be assumed as real, xc is the frequency
predicted by the linear approach at Re¼Rec, and xe is a small
deviation on the frequency.

The second-order term contains three contributions: ue is the
modification to the base flow related to the increase of Re, u2,0

represents the nonlinear interaction of û with its conjugate, u2,2 is
the nonlinear interaction of û with itself. These three terms
are computed as solutions of nonsingular linear systems (see
Eqs. (B2)–(B4) in Appendix B).

At Oðe3Þ, compatibility conditions need to be enforced to
ensure that the problem is correctly posed. These conditions lead to
an amplitude equation which relates the amplitude Awnl to three
parameters K, �0 and �2 which depend uniquely on ue, u2,0 and u2,2,
respectively (see Eqs. (B6)–(B8) in Appendix B). Restricting to the
description of the limit cycle, the amplitude equation takes the form

ixeAwnl ¼ KAwnl � ð�0 þ �2ÞjAwnlj2Awnl (26)

The amplitude Awnl and the correction to the frequency are
then determined by considering the real and imaginary parts of

this equation, leading to Awnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kr=ð�0;r þ �2;rÞ

p
and xe ¼

Ki � Krðð�0;i þ �2;iÞ=ð�0;r þ �2;rÞÞ where the subscripts r and i
represent the real and imaginary parts. Reintroducing the scaling,
the amplitude A¼ eAwnl and the frequency x of the limit cycle are
thus predicted as

A ¼ eAwnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kr

�0;r þ �2;r

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Rec
� 1

Re

r
(27)

x � xðwnlÞ ¼ xc þ Ki � Kr
�0;i þ �2;i

�0;r þ �2;r

� �
1

Rec
� 1

Re

� �
(28)

Finally, as specified above, we explain how the mean drag Fx,0

and fundamental components (Fy,1,c, Fy,1,s) of the oscillating lift
can be predicted by the WNL approach. The mean drag can be
obtained by Fx;0 ¼ DReðum; pmÞ, where D is the drag operator
defined in Eq. (17) and [um, pm] is the mean flow which corre-
sponds to the time-average of expansion (25), namely: ½um; pm� ¼
½ubc; pbc� þ e2ð½ue; pe� þ A2

wnl½u2;0; p2;0�Þ: Developing the terms as
an asymptotic expansion leads to

Fx;0 Reð Þ � Fx;0;Rec
þ Fx;0;e

1

Rec
� 1

Re

� �
(29)

with Fx0;Rec
¼ DRec

ðubc; pbcÞ; and

Fx0;e ¼ DRec
ðue; peÞ � D1ðubc; 0Þ þ A2

wnlDRec
ðu2;0; p2;0Þ

Similarly, the required components of the lift force are obtained
by applying the lift operator L defined in Eq. (18) to the order-one
component of the expansion, leading to

Fy;1;c � iFy;1;s ¼ 2AwnlLRec
û;p̂ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Rec
� 1

Re

r
(30)

5.2.1 Implementation and Results for the Cylinder. Lines 1–8
of the script shown in Fig. 10 (extracted from the script
SCRIPT_CYLINDER_ALLFIGURES.m) illustrate the sequence
of commands to perform the weakly nonlinear study for the cylin-
der wake. On line 2, we first determine the instability threshold,
and the corresponding base flow and eigenmode.7 On line 3, we

7This routine uses Newton iteration to directly compute the base flow, the
eigenmode, the frequency, and the critical Reynolds. The algorithm is very similar to
the one presented for the HB, with an additional unknown (Re) and an additional
constraint (normalization of the mode). The interested reader should reconstruct
easily the whole procedure from the code provided.
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solve the adjoint problem required for some terms in the WNL
formulation. On line 4, we then compute all the terms and coeffi-
cients of the WNL model. Lines 6–8 then process the results in a
way they can be plotted.

Figure 11 shows the predictions of the WNL approach regard-
ing the frequency (expressed as a Strouhal number through
St¼x/2p), mean drag, amplitude of the oscillating lift, and
energy-amplitude. As discussed in Refs. [4] and [20], when com-
pared to direct numerical simulation results, this approach gives
good prediction in the immediate vicinity of Rec, but deviation
appears very rapidly and disagreement is already large at Re¼ 48
(although, as discussed by Gallaire et al. [20] and also observed
by Tchoufag et al. [21], a convenient definition of e improves the
prediction). These aspects are justified by the perturbative nature
of the WNL approach. The description of the limit cycle can be
extended to larger Re with the approach presented next.

5.3 The Self-Consistent Model Reformulated in the
Harmonic-Balance Formalism

5.3.1 Analysis. We now briefly review the self-consistent
model as introduced by Mantič-Lugo et al. [5]. In their original
exposition, the authors adopted a pseudo-eigenmode expansion of
the flow as follows:

u ¼ um þ Asc½~u1ersctþixsct þ ~u1 ersct�ixsct� (31)

where um is the mean flow as previously defined, ~u1 is a pseudo-

eigenvector which is normalized by the condition jj~u1jj ¼
1=

ffiffiffi
2
p

; ~u1 is its complex conjugate, Asc is an amplitude parameter
directly related to the energy of the oscillating flow, and
ksc¼rscþ ixsc is a pseudo-eigenvalue which depends upon the
parameter Asc.

The original version of the model (discussed in detail in
Appendix C) allowed to obtain an amplitude equation predicting
the instantaneous growth rate r as function of the amplitude Asc.
However, if we are simply interested in the properties of the limit
cycle, not the transient, we may recast the self-consistent model in
a simpler way.

We, thus, start with a truncated Fourier decomposition of the
limit cycle under the form

u ¼ um þ u1;c cosðxtÞ þ u1;s sinðxtÞ (32)

where u1,c and u1,s are two real fields describing the nonlinear
perturbation at two instants separated by a quarter-period of

oscillation, and x is the (real) oscillation frequency of the limit
cycle (which is not known a priori).

Injecting this ansatz into the Navier–Stokes equations and tak-
ing the mean value and the first Fourier component leads to the
following coupled equations:

NS umð Þ ¼
C u1;c; u1;cð Þ þ C u1;s; u1;sð Þ

4
(33a)

xu1;s ¼ LNSum
ðu1;cÞ (33b)

�xu1;c ¼ LNSum
ðu1;sÞ (33c)

Note that this system of equations contains three unknown
fields (discretized on the Taylor–Hood basis) plus an extra scalar
unknown, namely the frequency x. In order to solve this coupled
problem, we thus need an extra scalar equation. The latter is pro-
vided by fixing the phase of the cycle. Several choices are possi-
ble, but a convenient one is to decide that the instant t¼ 0
corresponds to a maximum of the lift force. This condition reads

LReðu1s; p1sÞ ¼ 0 (34)

so that the Fourier decomposition of the lift force (24) will contain
only a cosine term, namely

Fy � Fy;1;c cos xt; with Fy;1;c ¼ LReðu1c; p1cÞ (35)

Note that the amplitude Asc, which was considered as a key
parameter in the original model of Ref. [5], does not appear in the
simplified version discussed here. The connection between our
parametrization and that of Mantič-Lugo et al. is as follows:

ðu1;c � iu1;sÞ ¼ 2Asc~u1 (36)

Considering their normalization choice, the parameter Asc of Ref.
[5] can be easily deduced from our results as follows:

Asc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Ð
Xðju1;cj2 þ ju1;sj2ÞdS

q
.

5.3.2 SC/HB1 Model: A Direct Algorithm. When reformu-
lated in this way, the nonlinear problem addressed by the self-
consistent model actually reduces to the restriction to order one of
a more general class of methods called harmonic balance methods
(HB). One of the first applications of these methods in the domain
of fluid mechanics has been done by Carte et al. [22,23]. The

Fig. 10 Illustration of the procedure for nonlinear calculations using STABFEM (extract from script SCRIPT_CYLINDER_
ALLFIGURES.m)
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development of such methods or related ones such as the time-
spectral method [24] and the search for efficient numerical imple-
mentation to solve such problems is currently an active field of
development in the fluid dynamics community. When considering
HB development with a large order of terms, direct resolution by
inversion of the full matrix is not achievable. Methods including
iterative solvers and efficient preconditioning are currently under
development (Marquet, personal communication [25]).

On the other hand, when restricting as here to a truncation to
order one (HB1 method), the use of adapted meshes makes the
building and inversion of the matrix accessible on standard com-
puters. We, thus, propose here a simple algorithm based on a
direct resolution using a Newton iteration, just as explained for
the base flow in Sec. 2. This method is proposed as an efficient
alternative compared to the double-loop resolution procedure of
Ref. [5].

The algorithm assumes that we know a guess for the full state-
vector defined as follows:

½um;u1;c;u1;s;x� ¼ ½ug
m;u

g
1;c;u

g
1;s;x

g� þ ½dum; du1;c; du1;s; dx�

Injecting and developing up to linear order leads to the following
equations:

NS ug
m

� �
� 1

4
C u

g
1;c;u

g
1;c

	 

þ C u

g
1;s;u

g
1;s

	 
h i
þ LNSu

g
m

dumð Þ

� 1

2
C u

g
1;c; du1;c

	 

þ C u

g
1;s; du1;s

	 
h i
¼ 0 (37a)

LNSu
g
m
ðug

1;cÞ � xgu
g
1;s � Cðdum; u

g
1;cÞ

þLNSu
g
m
ðdu1;cÞ � xgdu1;s � dxu

g
1;s ¼ 0 (37b)

LNSu
g
m
ðug

1;sÞ þ xgu
g
1;c � Cðdum;u

g
1;sÞ

þLNSu
g
m
ðdu1;sÞ þ xgdu1;c þ dxu

g
1;c ¼ 0 (37c)

Fig. 11 Comparison between the WNL results, the harmonic balance data (HB1), and baseflow/linear results: Strouhal num-
ber (a), mean drag (b), amplitude of oscillating lift (c), energy-amplitude of the nonlinear perturbation (d), and recirculation
length of mean/base flows (e)
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Fyðug
1;sÞ þ Fyðdu1;sÞ ¼ 0 (37d)

After discretization, this leads to a linear problem of the form
AX¼Y where X is the discretized version of the unknowns
½dum; du1;c; du1;s; dx�, and A is a matrix of dimension 3Ndofþ 1,
where Ndof is the dimension of the Taylor–Hood basis of finite
elements describing each of the three [u, p] fields. This system is
solved iteratively as explained in Sec. 2.1 for the determination of
the base flow. Mesh convergence issues for the nonlinear calcula-
tions are discussed in Appendix A. It is shown that the mesh M2

designed using “S” strategy is sufficient to yield converged results
within 0.3% accuracy for all quantities considered here, with the
exception of the energy-amplitude AE which requires the more
refined mesh M4 obtained using “D” strategy.8

In the proposed implementation, resolution of the problem is
done by the FREEFEMþþ program HB1_2D.edp which is wrapped
by the OCTAVE/MATLAB function SF_HB1.m. Note that the inter-
ested reader will also find within the sources of STABFEM project a
driver SF_HB2.m implementing the same direct resolution
method for the order-2 truncated harmonic balance. Generaliza-
tion to higher orders is planned for future developments of the
project.

5.3.3 Results for the Cylinder’s Wake. Lines 10–17 of the
script shown in Fig. 10 explain how to use these programs to
the SC/HB1 model for the wake of a cylinder in the range
Re � [47–100]. Note that a guess for the mean flow and the self-
consistent mode for Re¼ 47, i.e., just above the threshold, has
already been generated from the weakly nonlinear model at line 4
of the same script. This guess is used for the first step of the loop
over Reynolds in lines 14–17. For next steps of the loop, continua-
tion is done using the previous calculation results as guess.

Figure 12 illustrates the structure of the mean flow for Re¼ 60.
As already identified by Mantič-Lugo et al. [5], the recirculation
region associated with this mean flow is notably shorter than the
one associated with the base flow (Fig. 4).

Figure 11 shows the comparison between the WNL (green)
and HB1/SC (red) models for the quantities of interest identified
in this paper, namely the Strouhal number, the mean drag, the
maximum lift, the energy-amplitude, and the recirculation length
associated with the mean flow. When relevant, results regarding
the base flow and the linear approach are also displayed (blue).9

Concerning the quantities St, AE and Lx, differences between
HB1/SC, WNL models have already been commented in Refs.
[5] and [20].

The present results are also compared with the available litera-
ture, namely with the experiments of Ref. [26] for the St number
and with the direct numerical simulation results of Ref. [5] for AE

and Lx. The predictions of the SC/HB1 model show an excellent
agreement in the range Re � [Rec, 100] with the references. How-
ever, we can remark that the predictions of the WNL model rap-
idly depart from the previous ones as soon as Re� Rec � 1.

6 Conclusion

The objective of this paper is twofold. First, we aimed at giving
an up-to-date and comprehensive review on global stability
approaches, both linear and nonlinear, including the most recent
developments of the field. Second, we intended to provide an easy
to use software performing all these computations from a single
program. In accordance with this objective, all the figures pre-
sented in this paper can be produced by launching a single
OCTAVE/MATLAB program available on the website of the
project. This program handles all computation steps, from calls to
FREEFEMþþ to figure generation.

Although the focus here was on the reference case of 2D
incompressible and compressible flow around a cylinder, the
STABFEM software is designed to be easily customizable to a
variety of other situations. The project is currently in constant
development, and incorporates a growing number of other config-
urations. Under its present status, the project incorporates test-
cases for the following classes of problems:

� incompressible flows around 2D and axisymmetric blunt
bodies of various geometries, including spheres and disks
[21];

� incompressible flows around 2D and 3D objects in free
movement, including for instance the spring-mounted cylin-
der [27], and freely falling disks and spheres [28];

� incompressible and compressible flows f through apertures
[29,30];

� compressible flow around 3D objects [31];
� oscillations of hanging drops, sessile drops, and liquid

bridges [32];
� rotating free surface flows [33].

Our ambition is to use the website of the project as a support to
publish scripts allowing anyone to reproduce the main results of
our past and future publications on such topics. Such scripts are
already available concerning Refs. [21], [30], [32], and [33] and
the list of available case will be growing in the coming months.
The project is intended as collaborative, so anyone who wants to
contribute is welcome!

Appendix A: Mesh Convergence: Efficiency of Mesh

Adaptation and Effect of Domain Size

This appendix presents complementary results obtained using
various mesh designs. All results can be obtained using the fol-
lowing program available on the STABFEM website: SCRIPT_
CYLINDER_MESHCONVERGENCE.m.

A.1 Efficiency of the Mesh Adaptation Process. As dis-
cussed in Sec. 3, the mesh adaptation proves to be an extremely
efficient way to obtain significant and reliable results with very
reasonable meshes. The objective of this paragraph is to demon-
strate this point by comparing the efficiency of several mesh adap-
tation ways.

For this purpose, six meshes were generated. Mesh M1 was
adapted on the base flow obtained for Re¼ 60. Mesh M2 was
adapted to both the base flow and structural sensitivity (strategy
S). Mesh M2

0 was obtained by a subsequent refinement of mesh
M2, splitting all triangles in four subtriangles, therefore, doubling
the effective density of the mesh. Mesh M3 was adapted to both

Fig. 12 Structure of the mean flow over a cylinder for Re 5 60,
as computed by the HB1 model. Color levels: pressure;
streamlines.

8In terms of computational cost, on a standard laptop the program 9 requires
approximately 7 min using mesh M2 and 31 min using mesh M4.

9Figure 11 is obtained by line 19 of the script displayed in Fig. 10. The other
figures are processed in a similar way. The entire set of commands to obtain all
figures is provided in the script SCRIPT_CYLINDER_ALLFIGURES.m.
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the base flow and following [16] (strategy E). Meshes M4 and M5

were obtained by adapting to the structure of the direct eigenmode
(strategy D) and of the adjoint eigenmode (strategy A). In each
case, the adapt-mesh process was repeated twice to ensure a cor-
rect convergence.

Figures 2 and 13 illustrate the structure of meshes M2 and M4.
It can be observed that these two mesh-adaptation strategies lead
to meshes with comparable densities in the region close to the cyl-
inder. On the other hand, when moving downward in the wake,
mesh M2 quickly gets rather coarse while mesh M4 maintains a
significant density.

Table 1 gives numerical information about the geometry of
these meshes. In particular, we document the minimum and maxi-
mum cell size, as well as the cell size at four points A, B, C, D
defined with by their coordinates as follows: (xA, yA)¼ (0, 0.5)
(within the boundary layer at the cylinder wall); (xB, yB)¼ (2.5,
0.5) (in the region of maximum structural sensitivity); (xC,
yC)¼ (4, 0) (in the near wake); (xD, yD)¼ (10, 0) (in the far wake).
The results confirm that all meshes have similar densities in the
near wake (cell size at points A, B, C are comparable) while M4

has maximum resolution in the far wake (in the vicinity of
point D).

Table 2 compares the results obtained with the six meshes. For
base-flow characteristics Lx and Fx, all values agree with a relative
dispersion of less than 0.15%. This underlines that all adaptation
strategies are successful to correctly compute the base flow. The

performances of meshes for linear stability calculations can then
be evaluated by comparing the eigenvalues. Meshes M2 to M5 all
give values within less than 0.1% dispersion. The value obtained
with mesh M1, which is not adapted to the eigenmode, is a bit far-
ther from the others but still rather good. The table also displays
results allowing to compare the performances of meshes for non-
linear self-consistent calculations. As for the frequency and the
maximum lift, meshes M2 to M5 again give almost identical val-
ues within less than 0.1% dispersion. The dispersion concerning
the energy-amplitude of the perturbation AE displayed in the last
column is, however, much larger. Only the mesh M4 is able to cor-
rectly compute this quantity, while all other meshes significantly
underestimate it. This is not surprising since this quantity is an
integral property which depends upon the structure of the nonlin-
ear perturbation over the whole wake, not only the near-wake
region.

From this study, we can conclude that if we are only interested
in predicting the frequency of the mode and the forces exerted on
the cylinder (in both linear and nonlinear regimes), the strategies
S (mesh M2) and E (mesh M3) are the most efficient and lead to a
very light mesh (here only 2038 vertices for mesh M2). On the
other hand, if we are interested in describing the structure of the
perturbation in the whole domain (and being able to correctly
evaluate its energy), mesh adaptation to the eigenmode structure
is preferable. However, this second strategy produces a much finer
mesh (here 12,080 point).

Fig. 13 Illustration of the stucture of mesh M4 (adapted to both the base flow and direct eigenmode)

Table 1 Description of meshes used for validation of mesh adaptation strategy: number of vertices Np; number of degrees-of-
freedom of the P2–P2–P1 Taylor–Hood basis Ndof; cell size (minimum and maximum value, and value at four characteristic point A,
B, C, D as defined in the text)

Mesh Np Ndof dmin dmax dA dB dC dD

M1 (adapt on base flow) 1429 12,545 0.0131 14.33 0.0259 0.514 0.819 1.067
M2 (adapt on sensitivity) 2038 17,885 0.0155 14.17 0.02826 0.2046 0.3909 1.2014
M2
0 (adapt on sensitivity, split) 7974 70,651 0.00786 7.131 0.0104 0.0744 0.0975 0.614

M3 (adapt following [16]) 3749 32,655 0.01542 12.7109 0.09689 0.1236 0.2004 0.65775
M4 (adapt on mode) 12,080 103,564 0.00825 12.461 0.0229 0.143 0.0993 0.0934
M5 (adapt on adjoint) 3813 330,715 0.0108 13.95 0.0176 0.114 0.127 1.177

Table 2 Results for mesh adaptation strategy (Re 5 60): base-flow characteristics Lx and Fx, linear eigenvalue k, nonlinear self-
consistent model characteristics xHB1, Fy,1,c and AE

Mesh Lx Fx k Lx,HB1 Fx,HB1 xHB1 Fy,1,c AE

M1 4.0733 0.64310 0.047056þ 0.74416i 2.6073 0.69277 0.84334 0.1298 1.8301
M2 4.075 0.64348 0.046719þ 0.74489i 2.6153 0.69246 0.84351 0.12789 1.7134
M2
0 4.0772 0.64391 0.04684þ 0.74511i 2.6141 0.69338 0.84383 0.12799 2.048

M3 4.0749 0.64370 0.04673þ 0.74538i 2.6140 0.69317 0.84408 0.12808 2.064
M4 4.0748 0.64402 0.04676þ 0.74502i 2.6130 0.69034 0.84371 0.12809 2.5905
M5 4.0736 0.64470 0.046782þ 0.74534i 2.6142 0.69399 0.84390 0.12800 1.8234

Note: All the results can be obtained using the Octave/Matlab script SCRIPT_CYLINDER_MESHCONVERGENCE.m.
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A.2 Effect of Domain Size and Boundary Conditions. As
already identified in several previous studies, the size of the
domain and the type of boundary conditions applied at the boun-
daries have a notable impact on results. To illustrate this, we
designed four additional meshes. All were obtained through adap-
tation to base flow and sensitivity, just as mesh M2. Meshes M6

and M7 are, respectively, twice smaller and twice larger than the
reference one. Meshes M8 and M9 have the same dimension but
the boundary condition at the lateral boundary Clat differs. Unlike
the reference case M2 which uses a no-stress boundary condition
(identical to that applied at the outlet), mesh M8 uses a “slip” con-
dition uy¼ 0; @ux/@y¼ 0, while mesh M9 uses an even more
restrictive constant-flow condition (the condition at the lateral
boundary is ux¼ 1, uy¼ 0, just as for the inlet).

Table 3 compares results obtained using meshes M6-M9. Even
though the domain size of the reference case (namely [�40,
80]� [0, 40]) may appear large, the table shows that confinement
effects are still present. The quantity which appears to be the most
sensitive to domain size and/or boundary conditions is the imagi-
nary part of the linear eigenvalue. Interestingly, the nonlinear SC
results appear to be more robust with respect to confinement
effects than linear ones. In effect, values for nonlinear frequency
xSC and the maximum lift Fy,1,c obtained with meshes M2, M7 M8

and M9 agree with less than 0.3% dispersion (Table 3).

Appendix B: Additional Details of the Weakly

Nonlinear Approach

B.1 Derivation of the Amplitude Equation Using Multiple-
Scale Approach. The initial derivation of Ref. [4] makes use of a
multiple scale method in order to obtain an amplitude equation.
The starting point can be taken as the following expansion of the
velocity flow field:

u ¼ ubc þ e½AwnlðsÞûeixct þ c:c:�
þ e2½ue þ jAwnlðsÞj2u2;0 þ ðAwnlðsÞ2u2;2e2ixct þ c:c:Þ� þ Oðe3Þ

(B1)

Note that compared to the simplified version given in the main
text by Eq. (25), the amplitude Awnl depends upon a slow time
scale s¼ e2t.

Substituting the expansion (B1) into the Navier–Stokes equa-
tions (19) and grouping terms multiplied by the same power of e,
a hierarchy of equations is obtained. The order e0 gives directly
the base flow at Rec. The order e1 corresponds to the linear neutral
eigenmode as computed in the first part of this article. The order
e2 contains three terms, respectively, computed as the solutions of
the following linear problems:

LNSubc
ðueÞ � 2r � DðubcÞ ¼ 0 (B2)

LNSubc
ðu2;0Þ ¼ Cðû; ûÞ (B3)

LNSubc
u2;2ð Þ � 2ixcu2;2 ¼

1

2
C û; ûð Þ (B4)

Finally, compatibility conditions, given by the Fredholm’s alter-
native, are imposed at order e3 to remove the secular terms, leading
to an amplitude equation, known as Stuart–Landau equation

@Awnl

@s
¼ KAwnl � �0 þ �2ð ÞjAwnlj2Awnl (B5)

where coefficients K, �0, and �2 are given by

K ¼ �hû
†; C ue; ûð Þ þ 2r � D ûð Þ
� �

i
hû†; ûi

(B6)

�0 ¼
hû†; C u20; ûð Þi
hû†; ûi

(B7)

�2 ¼
hû†; C u22; û

� �
i

hû†; ûi
(B8)

B.2 Normalization of the Eigenmode. A key issue in the
weakly nonlinear expansion is that the definition of the amplitude
depends upon a normalization choice of the eigenmodes. Several
choices are possible. In the literature, three possibilities have been
used:

First, Sipp and Lebedev [4] normalized the eigenmode by
assuming a specified value to the y-component of the velocity at
one point, namely

ûyð1; 0Þ ¼ 0:4612 (B9)

The advantage of this choice is that the coefficients �0 and �2

have the same order of magnitude as the coefficient K.
Second, Gallaire et al. [20] proposed the following normaliza-

tion choice: ð
X
jûj2dx ¼ 1

2
(B10)

This directly leads to jAj ¼ AE, so this normalization seems equiv-
alent to the previous one.

Third, following [33], another convenient choice is to normal-
ize the eigenmode with its lift force

DRec
û; p̂ð Þ ¼ 1

2
(B11)

The advantage of this choice is that the amplitude jAj is then a
direct measure of the fundamental lift. In effect, Eq. (30) directly
leads to Fy;1;c ¼ jAj; Fy;1;s ¼ 0.

In our implementation of the WNL approach, we allowed
choosing the normalization convention, as seen in line 4 of
Fig. 10. In Table 4, we give the predictions of the WNL approach
using the three normalization choices. We can note that the coeffi-
cients �0 and �2 strongly depend on the normalization choice. On
the other hand, the frequency deviation xe, the k coefficient, and
the term Fx,0,e related to the dependency of mean drag with devia-
tion from the threshold are independent upon the normalization.

Considering the lift force, columns 7 and 8 of the table show
that the different choices of normalization give different values
for the coefficients F1,y,c and F1,y,s. However, the sin-cos expan-
sion of the lift force can be recast as Fy ¼ ðFy;1;c cos xtþ
Fy;1;s sin xtÞ ¼ jFy;1j cosðxtþ uÞ with jFy;1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

y;1;c þ F2
y;1;s

q
.

The last column of the table confirms that the three possible nor-
malization choices effectively lead to the same values of jFy;1j.

Table 3 Comparison of the performances of several meshes with variable dimensions and different boundary conditions

Mesh N Lx Fx k Lx,SC Fx,SC xSC FY,SC

M6 [�20, 40] x [0, 20] 1954 4.1097 0.65048 0.048335þ 0.74989i 2.6014 0.69988 0.85032 0.13219
M7 [�80, 160] x [0, 80] 2292 4.0618 0.64046 0.046081þ 0.74286i 2.6188 0.68924 0.84042 0.12631
M8 (“slip” conditions) 2026 4.0701 0.64590 0.047017þ 0.74790i 2.6127 0.69492 0.84613 0.12836
M9 (“inlet” conditions) 2043 4.0677 0.64 557 0.047077þ 0.74781i 2.6152 0.69429 0.84562 0.12771
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Appendix C: Additional Details About the

Self-Consistent Method

The objective of this appendix is to provide additional details
about the SC model in its original form as given by Mantič-Lugo
et al. [5], and to explain the connection with the simpler version
discussed in Sec. 4.2. The full model is obtained by introducing
the decomposition (31) into the Navier–Stokes equations,
leading to

NSðumÞ � A2Cð~u1; ~u1Þ ¼ 0 (C1a)

ðrsc þ ixscÞ~u1 ¼ LNSum
ð~u1Þ (C1b)

Equation (C1a) provides the mean flow field um, while the
pseudo-eigenpairs ðksc; ~u1Þ can be computed by solving the eigen-
value problem (C1b). Mantič-Lugo et al. [5] initially proposed a
resolution method involving two nested loops, which is advanta-
geously replaced by the direct Newton resolution of Sec. 5.3.

The self-consistent model has the following properties:

� For A 
 1, it is equivalent to the linear eigenvalue problem
(9), and the generalized eigenvalue coincides with the one
predicted by linear stability: rSCþ ixSC¼ rlinþ ixlin.

� For rSC¼ 0 (corresponding to a specific choice of the ampli-
tude A¼Asc), the expansion (31) is equivalent to the Fourier
expansion (32) taken as the starting point in this paper.

� For 0<A<Asc, the resolution leads to a relation rSC(A);
xSC(A) such that 0< rSC(A)< rlin. Although in this case the
expansion (31) cannot represent the flow for all t, Mantič-
Lugo et al. [5] argued that the relation between rSC and A
can be used to build an amplitude equation which captures
the transient approach to the limit cycle.

Note that in our numerical implementation, the programs can
actually be used to solve the SC model in the general case (with
r 6¼ 0). This can be controlled by assigning a nonzero value to the
optional parameter sigma of the SF_SelfConsistent.m
OCTAVE/MATLAB function. The interested reader will find on the
website of the STABFEM project a program SCRIPT_CYLINDER_
NONLINEAR.m which computes A as function of r for Re¼ 100,
yielding identical results as displayed in Fig. 3 of Ref. [5].

Appendix D: Details of the Weak Formulation

In the presentation of the numerical methods in Secs. 2.1 and
2.2, and introduction of the weak form, we have omitted an impor-
tant point, namely the issue of boundary conditions. In this appen-
dix, we explain more rigorously how the weak formulation is
obtained. We consider here the full time-dependent nonlinear
Navier–Stokes equations, but the treatment of the base-flow equa-
tions and the linearized equations is essentially the same.

Noting C the boundary of the numerical domain, the latter can
be decomposed in five parts: C ¼ Cin [ Ccyl [ Caxis [ Cout [ Clat.
Noting r ¼ 2Re�1DðuÞ � p1 the stress tensor, the relevant bound-
ary conditions are as follows:

On Cin (inlet): u¼ ex (Dirichlet).
On Ccyl (surface of the cylinder): u¼ 0 (Dirichlet).
On Cout (outlet): r� n¼ 0 (Neumann).
On Clat (lateral boundary): r� n¼ 0 (Neumann).
On Caxis (symmetry plane): uy¼ 0 and rxy¼ 0 (Mixed).

We will introduce the following notation for integrals along
any portion of the boundary Ci of the product of two quantities
/1, /2 (either scalar or vectorial)

h/1;/2iCi
¼
ð

Ci

/1 � /2 d‘;

Instead of the simplified version (3), the more precise form of the
weak formulation can be first written as follows:

8 v; q½ �; @thv;ui ¼ hv;N S u; pð Þi þ hq;r � ui

þ 1

e
hv; uiCcyl

þ hv; u� exð ÞiCin
þ hvy; uyiCaxis

	 

þ hv; r � niCout[Clat[Caxis

(D1)

where e¼ 10�30 is a small parameter used to impose the
Dirichlet boundary conditions by penalization. An integration by
parts of the pressure gradient and viscous stress terms of the
Navier–Stokes equation eventually leads to the weak form effec-
tively used in the programs Newton2D.edp and Stab2D.edp

8 v; q½ �; @thv; ui ¼ �hv; C u; uð Þ=2i � 2Re�1hD vð Þ : D uð Þi
þ hr � v; pi þ hq;r � ui

þ 1

e
hv; uiCcyl

þ hv; u� exð ÞiCin
þ hvy; uyiCaxis

	 

(D2)

Note that the Neumann boundary conditions do not appear any-
more thanks to the integration by parts.

Appendix E: Numerical Implementation in FREEFEM11

In this appendix, we provide pieces of codes illustrating how
the basic algorithms are implemented in the FREEFEMþþ solvers.
These explanations will be useful both for readers who wish to
use directly FREEFEMþþ solvers without using the overlayer of
OCTAVE/MATLAB drivers provided by the STABFEM software, and also
for the reader who wants to understand the logics of the imple-
mentation and to customize the software to implement their own
cases. The full version of the codes is available in the web reposi-
tory of the STABFEM project. A full documentation of the software
is also in progress.10

Figure 14 details the implementation of the Newton algorithm for
base-flow computation, as implemented in the FREEFEMþþ solver
Newton2D.edp which is a generic solver usable for the whole class
of 2D incompressible problems. Note that the syntax makes use of
macros D, div, Conv, resulting in a very similar to the weak formula-
tion written in Appendix D. The boundary conditions are also imple-
mented using a macro BoundaryconditionsBaseFlow. To
allow an easy customization, this macro is not defined
in the generic solver Newton2D.edp but is reported in a
file Macros_StabFem.idp regrouping case-dependant
macros (essentially boundary conditions and postprocessing
options).

Table 4 Results of the WNL approach for three different choices of eigenmode normalization

Norm. k �0 �2 xe Fx,0,e Fy,1,c/e Fy,1,s/e jFy;1j=e

[4] 9.10988þ 3.28004i 9.3996–32.0289i �0.305116–0.866118i 36.2307 5.2848 0.0349973 �0.536113 0.537254
[20] 9.10988þ 3.28004i (0.488701–1.66524i)� 10�3 (�1.58635–4.50309i)� 10�5 36.2307 5.2848 0.537254 0 0.537254
[34] 9.10988þ 3.28004i 32.62–111.152i �1.05886–3.00574i 36.2307 5.2848 0.537254 0 0.537254

10https://gitlab.com/stabfem/StabFem/blob/master/99_Documentation/
MANUAL/main.pdf
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Figure 15 details the implementation of the shift-invert algo-
rithm for eigenvalue computation, as implemented in the generic
solver Stab2D.edp for 2D incompressible flows. Here again,
boundary conditions (which may differ from a case to another
within the generic class of 2D incompressible flows) are defined
by a macro BoundaryconditionsStability which has to
be defined in the Macros_StabFem.idp file.

We do not provide here the listing for the Newton resolution of
the HB1 model, but the interested reader is encouraged to look at
the program HB1_2D.edp on the project site.
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