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Axisymmetric orifices with neck diameter equal to the plate thickness have been investigated.
The influence of orifice geometry on the transfer impedance in presence of bias flow was
predicted for laminar-flow conditions by means of a compressible Linearized-Navier-Stokes-
Equations model. The results are compared to those for an incompressible-flow model and to
measurements of the transfer impedance. The effect of confinement on the transfer impedance
appears to be negligible for the resistance. The effect of confinement on the inertance (or
reactance) can be estimated by means of Fok’s classical result for thin orifices. The experimental
results agree qualitatively with the predicted impedances. The Strouhal numbers for minima
of the resistance are slightly higher than predicted. Negative minima indicating a whistling
potentiality correspond to hydrodynamic modes of the orifice. The predicted inertance is at
higher Strouhal numbers significantly larger than the measured one. The results indicate how
whistling potentiality of a certain hydrodynamic mode can be promoted. The amplitude of
the acoustical forcing was varied permitting to delimit the conditions under which the orifice
response is linear. As the acoustic velocity amplitude approaches the steady flow velocity, the
whistling potentiality of the orifices disappears.
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𝑐 = Sound speed, m · s−1

𝐻𝑒 = Helmholtz number
i = imaginary unit, i2 ≡ −1
Im {. . . } = Imaginary part
𝐿 = Length, m
𝑀 = Mach number
𝑝 = Pressure, Pa
𝑞 = Unsteady volumetric flow, m3 · s−1

𝑄 = Steady volumetric flow, m3 · s−1

𝑟 = reflection coefficient
𝑅 = Radius, m
𝑅𝑒 = Reynolds number
Re {. . . } = real part
u = velocity, m · s−1

𝑢 = axial velocity component, m · s−1

𝑈 = Speed, m · s−1

𝑍 = Impedance, m · s−1

𝛼 = Factor
𝛿 = thickness, m
Δ = Difference
𝜃 = Angle, rad
𝜈 = Kinematic viscosity of air, 1.5 × 10−5m2s−1

𝜌 = Density, kg · m−3

∇ = Gradient operator, m−1

Φ = porosity
𝜔 = Angular frequency, rad · s−1

Subscripts

0 = Steady value
1 = Displacement
2 = Momentum
cal = Calibration
cor = Correction
dif = Diffuser
dst = Downstream
frc = Forcing
hfl = High-frequency limit
𝐼 = Imaginary part
inl = Inlet
max = Maximum
mic = Microphone
min = Minimum
msr = Measurement
lfl = Low-frequency limit
o = Open
orf = Orifice
oul = Outlet
𝑟 = Radial component
𝑅 = Real part
s = Sample
set = User set
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tws = Thwaites
ust = Upstream
𝑥 = Axial component

Superscript
′ = Indicates fluctuation
¯ = Dimensionless quantity

I. Introduction
In many real-world applications—including aeroengines and power gas turbine combustors —one encounters a flow

passing through orifices in plates [1–5]. Under unfavorable conditions these orifices produce sound; i.e., they whistle.
Whistling of sharp edged circular orifices in finite-thickness plates was first experimentally observed by Sondhauss

[6] and reported by Rayleigh [7]. Experimental investigations by Anderson [8–12] and later by Jing and Sun [13],
Karthik et al. [14], Testud et al. [15], Lacombe et al. [16], Zhou and Bodén [17], Su et al. [18], Moers et al. [19] and
Wu et al. [20] provided more insight into the controlling parameters. Nair and Sujith [21] studied the chaotic behavior
around the onset of whistling. Lacombe et al. [16], Moussou [22] and Fabre et al. [4] used the Nyquist criterion [23] to
obtain a prediction of the sharp-edged orifice’s whistling based on its acoustic transfer impedance. Jing and Sun [13]
used a discrete-vortex model to predict the acoustical response of orifices. Ji and Zhao [24] used a Lattice Boltzmann
model to predict the acoustic impedance of orifices. Su et al. [18] and Chen et al. [25] used Unsteady Reynolds
Averaged Navier Stokes (URANS) simulations to predict the transfer impedance of thick sharp edged orifices. Alenius
et al. [26, 27] and Sorvadi et al. [28] used compressible Large Eddy Simulations (LES) to study sound production by
a sharp-edged thick-plate orifice. Kiergegaard et al. [29, 30] and later Fabre et al. [4] used Linearized Navier Stokes
Equation (LNSE) models to study the whistling conditions of an orifice in a thick plate.

In particular, Fabre et al. [3] reported a numerical simulation based study of acoustic response of a single sharp-edged
circular-shaped perforation in an infinitely-thin plate. In a subsequent publication—Fabre et al. [4] reported a numerical
simulation based investigation of whistling by a single sharp-edged cylindrical perforation in a plate of finite thickness.
In both studies a laminar steady base flow was established in the direction of the perforation’s axis of rotational symmetry.
The laminar base flow was then used as the initial condition, for simulations employing a Linearized Navier-Stokes
Equations (LNSE) code. These LNSE simulations consisted of acoustically perturbing the base flow at a fixed frequency.
The acoustic impedance of the circular perforation was determined for the set frequency. This was repeated for an
ensemble of frequencies.

We note that for bias flow through slit-shaped orifices, the influence of the geometry of the edges was investigated
experimentally by Tonon et al. [31] and Moers et al. [19]. Moreover, in the absence of flow the influence of a cylindrical
orifice’s shape on its transfer impedance was investigated by Temiz et al. [32]. The focus of investigation of the presently
reported study was on cylindrical orifices of various shapes subject to bias flow.

A sharp-edged orifice subject to a bias flow and upstream acoustic forcing, displays local minima in the real
part of the transfer impedance. If, this local minimum is negative it is said that there is whistling potentiality. The
Strouhal numbers at which these minima occur correspond to the convection time close to an integer number of shear
perturbations from the orifice’s inlet to its outlet. The first local minimum corresponds to the presence within the orifice
of one perturbation, the second to two, etc. Ergo, in this text these local minima of the real part of the transfer impedance
will be referred to as the first, second, etc. hydrodynamic modes.

Guzman-Iñigo et al. [5], made a first step to investigate —by means of numerical simulations and the use of an
semi-analytical model (based on Howe’s analogy [33])—the influence of the shape of a single circular perforation
in a plate of finite thickness. Indeed, Guzman-Iñigo et al. [5] reported results for a slightly rounded upstream inlet
of the perforation. They reported that very small changes of the perforation’s inlet edge can bring about significant
modifications in its acoustic response. One notes that Guzman-Iñigo et al. [5] state: “. . . this paper is restricted to
small modifications of the edge when compared with the radius of the hole.” Indeed, in Ref. [5] the influence of more
significant rounding of the inlet edge was left to the future.

We note that sound production by orifices—in the situation as sketched above—is similar to that in: whistler nozzles,
horns, diffusers and shalow cavities [34–36]. A qualitative explanation of this sound production mechanism—in terms
of Howe’s analogy [33]—was provided by Hirschberg et al. [34].
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Fig. 1 Sketch of the computational domain.

The present work builds on Fabre’s et al. [3, 4] & Guzman-Iñigo’s et al. [5] work. Indeed, we used a LNSE-simulation
approach to investigate the transfer impedance of an orifice in a plate of finite thickness—in the presence of laminar
flow through it. In addition, original complementary measurements were carried out using an impedance tube for the
four investigated orifice shapes, to wit: a sharp-edged orifice, a rounded-inlet and sharp-outlet orifice, a sharp-inlet and
rounded-outlet orifice, a convergent-divergent nozzle orifice (i.e., with a rounded inlet followed by a diffuser section).

We report theoretical results on the influence of significant rounding of the inlet edge. In addition, we present—
hitherto unreported—results of a systematic investigation of the effect of a rounded downstream edge. We also
numerically and experimentally investigated the acoustic response of a convergent-divergent-nozzle orifice. Moreover,
the experiments were used to investigate the influence of the upstream acoustic-forcing amplitude on the results. This
was done to probe the limits of the LNSE model’s application regime. In the experiments the orifice is confined within a
tube. The influence of this confinement is quantified for the sharp edged orifice.

The compressible numerical-simulation approach—including a description of the computational domain, the
equations which are solved and boundary conditions—used to preform the investigation are succinctly described in
§II and §II.B.2. In §III, the experimental approach is described. Results are reported in §IV. Two distinct LNSE
codes—viz. incompressible and compressible LNSE—are compared in §IV.A. Results of the parameter study performed
with the compressible LNSE code are provided in §IV.B. Complementary experimental results are provided and
compared to numerical simulation results in §IV.C. Conclusions are drawn in §VI.

II. The numerical simulation approach
In §II.A, a description of the numerical domain is provided. The equations solved for the numerical simulation

(mean flow and compressible LNSE) are provided in §II.B. The reader is referred to Guzman-Iñigo et al. [37] for a
more expansive discussion of the compressible LNSE model. The boundary conditions used are discussed in §II.C. A
description of how the impedance is determined is provided in §II.D.

A. The computational domain
In Fig. 1, a sketch of the computational domain used for the presently-reported investigation is shown. The dashed

dotted line is a cylindrical-symmetry axis. The cylindrical symmetric domain had a radius of 5𝑅orf to the left (upstream)
and right (downstream) of a constriction with a minimum radius 𝑅orf . The length of this constriction

𝐿orf = 2𝑅orf (1)

was fixed for all presently-reported numerical investigations. The lengths of the parts of the domain upstream and
downstream from the constriction—henceforth referred to as the orifice—were 40𝑅orf and 300𝑅orf , respectively. The
axial position of the in- and outlet are—in Fig. 1—indicated with 𝑥inl and 𝑥oul.

The four orifice shapes considered for our numerical investigation—shown in Fig. 2—were:

(a) a sharp-edged circular orifice (Fig. 2(a)),
(b) a rounded upstream edge with a sharp-edged outlet (Fig. 2(b)),
(c) a sharp-edged inlet with a rounded outlet (Fig. 2(c)),
(d) a convergent-divergent nozzle geometry (Fig. 2(d)).

The rounded-inlet orifice (Fig. 2(b) had an upstream-edge radius of curvature, 𝑅ust. The rounded-outlet orifice
(Fig. 2(c)) had an downstream-edge radius of curvature, 𝑅dst. The convergent-divergent nozzle the diffuser angle of the
convergent-divergent nozzle orifice (Fig. 2(d)) was
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Fig. 2 Orifice shapes considered for the numerical simulation study: (a) sharp-edged orifice (b) rounded
upstream edge (c) rounded downstream edge (d) convergent-divergent nozzle.
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𝜃dif = 2 arctan
(

𝑅out − 𝑅orf
𝐿orf − (𝑅orf/2)

)
(2)

where the neck-cross-section radius 𝑅orf and plate thickness 𝐿orf were fixed (Eq. (1)) and the radius of the outlet cross
section 𝑅out (defined in Fig. 2(d)) was varied systematically.

B. The solved equations
The equations solved to establish the mean flow are described in §II.B.1. In §II.B.2 the linearized Navier-Stokes

equations (LNSE) are presented.

1. Mean flow
The dimensionless steady incompressible-flow equations (mass and momentum conservation)—which are solved to

establish a mean flow—are:

∇̄ · ū = 0 (3)

ū · ∇̄ū = − 1
�̄�
∇̄𝑝 + 1

𝑅𝑒orf
∇̄2ū (4)

where

𝑅𝑒orf ≡
2𝑅orf𝑈orf

𝜈
(5)

is the Reynolds number based on the orifice diameter 2𝑅orf and 𝑈orf the averaged axial flow speed at the orifice’s inlet.
𝑈orf is defined as follows:

𝑈orf =
𝑄orf

𝜋𝑅2
orf

(6)

where 𝑄orf is the volumetric flow rate through the orifice.
These dimensionless equations were discretised using the finite-element method within the FEniCSx computing

platform [38] and a first-order accurate Newton integration scheme. A basis of Arnold-Brezzi-Fortin MINI-elements [39],
with 𝑃1 elements for the pressure and 𝑃1𝑏 elements for each velocity component. The discrete non-linear problem was
solved using the Newton method.

2. Linearized Navier-Stokes equations
The dimensionless compressible linearized Navier-Stokes equations (LNSE) are:

𝐻𝑒orf
𝜕�̄�′

𝜕𝑡
= −�̄�0∇̄ · (ū′) − ū0 · ∇̄�̄�′ (7)

𝐻𝑒orf
𝜕ū′

𝜕𝑡
+ ∇̄ · (ū′ū0 + ū0ū′ + �̄�′ū0ū0) = −∇̄𝑝 + 𝑀orf

𝑅𝑒orf
∇̄2ū (8)

where

𝐻𝑒orf =
2𝑅orf𝜔

𝑐orf
(9)

is a Helmholtz number based on the—upstream boundary imposed—forcing frequency, 𝜔, the orifice’s diameter, 2𝑅orf ,
and the sound speed, 𝑐orf at its inlet; and

𝑀orf =
𝑈orf
𝑐orf

(10)

is the Mach number at the orifice’s inlet.
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BC(1)

BC(3) BC(5)

BC(4)
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Fig. 3 Sketch of where the boundary conditions (BCs) are applied.

These LNSE simulations—using the previously computed mean flow as a background flow—were performed using
the FEniCSx computing platform [38] and a second-order accurate finite-element method. N.b., these equations were
solved in the frequency domain.

A detailed description of the numerical model for the incompressible flow simulations are found in Fabre et al. [4].

C. Boundary conditions
In Fig. 3, a sketch of where the boundary conditions (BCs) are applied is shown. The pipe segments, when present

upstream or downstream of the orifice have a cross sectional radius of 5𝑅orf . Two different sets of boundary conditions
are applied to establish the mean flow and to perform the LNSE simulations. These boundary conditions are briefly
described in §II.C.1 and §II.C.2, respectively.

1. Mean-flow boundary conditions
The boundary conditions applied to establish the mean flow were:

BC(1): 𝑢𝑥 = 𝑈orf𝑅orf
2/(5𝑅orf)2

BC(3): 𝑢𝑟 = 0
BC(4): 𝑢𝑟 = 0
BC(5): 𝑢𝑥 = 0 and 𝑢𝑟 = 0

where BC(1) is an inflow boundary condition, BC(3) a slip boundary condition, BC(4) is a symmetry boundary condition
and BC(5) is a no-slip boundary condition.

2. LNSE boundary conditions
The boundary conditions used to perform the LNSE simulation were:

BC(1): non-reflective boundary condition
BC(2): non-reflective boundary condition
BC(4): 𝑢𝑟 ,𝑅 = 0 and 𝑢𝑟 ,𝐼 = 0 (symmetry boundary condition)
BC(5): 𝑢𝑥,𝑅 = 0 and 𝑢𝑥,𝐼 = 0 (no-slip boundary condition)
BC(5): 𝑢𝑟 ,𝑅 = 0 and 𝑢𝑟 ,𝐼 = 0 (no-slip boundary condition)

where BC(4) is a symmetry boundary condition and BC(5) is a no-slip boundary condition. N.b., the subscripts 𝑅 and 𝐼

indicate the real and imaginary components, respectively. Moreover, at BC(1) acoustic forcing at a fixed frequency 𝜔

was applied.
The boundary conditions for the incompressible flow simulation results are found in Ref. [4]. In the case of the

incompressible flow model results, there was a pipe of radius 5𝑅orf upstream of the orifice. The downstream flow
emerged into free space, bounded by the downstream side of the orifice plate.

D. Determination of the impedance
The transfer impedance, 𝑍 , of the orifice is defined as follows

𝑍 =
𝑝′ust − 𝑝′dst

𝑞′
= 𝑍𝑅 + i𝑍𝐼 (11)

where 𝑞′ is the volumetric flow rate fluctuation. 𝑝′ust and 𝑝′dst are the up- and downstream pressure fluctuation; viz., up-
and downstream of the orifice. In dimensionless form the impedance is
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�̄� = �̄�𝑅 + i�̄�𝐼 =
𝑅2

orf
𝜌orf𝑈orf

𝑍 (12)

The impedance is a function of the forcing frequency 𝜔, which in dimensionless form becomes a Strouhal number, to
wit:

Ω ≡ 𝑅orf
𝑈orf

𝜔 (13)

The up- and downstream pressure fluctuations are taken to be composed of up- and downstream traveling plane
waves in the pipe segments up and downstream of the orifice 𝑝±ust and 𝑝±dst, respectively. These wave amplitudes are
obtained by wave decomposition of the cross-sectional averaged results of the simulations—the multi-microphone
method was used for this. The acoustic field at the axial orifice inlet and outlet positions 𝑥inl and 𝑥oul (defined in
Fig. 1)—is obtained by extrapolation, namely

𝑝′ust = 𝑝+ust exp
(
−i

𝜔

𝑐 + 𝑢0
𝑥inl

)
+ 𝑝−ust exp

(
i

𝜔

𝑐 − 𝑢0
𝑥inl

)
(14)

𝑝′dst = 𝑝+dst exp
(
−i

𝜔

𝑐 + 𝑢0
𝑥oul

)
+ 𝑝−dst exp

(
i

𝜔

𝑐 − 𝑢0
𝑥oul

)
(15)

In terms of velocity fluctuations, one has

𝑢′ust =
𝑝+ust
𝜌𝑐

exp
(
−i

𝜔

𝑐 + 𝑢0
𝑥inl

)
−

𝑝−ust
𝜌𝑐

exp
(
i

𝜔

𝑐 − 𝑢0
𝑥inl

)
(16)

𝑢′dst =
𝑝+dst
𝜌𝑐

exp
(
−i

𝜔

𝑐 + 𝑢0
𝑥oul

)
−

𝑝−dst
𝜌𝑐

exp
(
i

𝜔

𝑐 − 𝑢0
𝑥oul

)
(17)

The unsteady volumetric flow rate fluctuation is then taken to be

𝑞′ = 25𝜋𝑅2
orf𝑢

′
ust (18)

III. Experimental approach
A succinct description of the experimental setup is provided in §III.A. The experimental method used to determine

the transfer impedance is briefly described in §III.C. Appendix A provides a description of the calibration of the flow
controller used to set the steady bias flow.

A. Experimental setup
In Fig. 4, a sketch of the experimental setup used to determine the transfer impedance of an orifice subject to a bias

flow is shown. A volume-flow rate ¤𝑄 is imposed— using a calibrated flow controller—on the upstream side (left-hand
side of the orifice in Fig. 4) of the orifice to impose the bias flow.

The radius of the pipe upstream and downstream from the orifice was 𝑅pipe = 25 mm. The shapes of the orifices
could be varied. Four of the shapes described in Fig. 2 were investigated—viz.: the sharp edge orifice, an orifice with
rounded upstream edge 𝑅ust = 2𝑅orf , an orifice with rounded downstream edge 𝑅dst = 2𝑅orf and a convergent divergent
orifice with 𝑅out = 7𝑅orf/4.

Acoustic forcing was done by means of a 25 W loudspeaker fixed flush at the upstream-pipe end. The imposed
acoustic-forcing signal was harmonic and its amplitude could be varied. For a fixed forcing amplitude a preset frequency
range was scanned. Six pre-polarized 1/4 inch microphones (type BWSA, sensitivity 50 mV · Pa−1) mounted flush
upstream from the orifice under investigation were used to recorded the acoustic response due to forcing.

The samples used were very precise (accuracy of the order of 0.01 mm) reproductions of the geometries depicted in
Fig. 2. E.g., the sharp-edge were manufactured such that they were literally razor sharp. This was confirmed by the fact
that the transfer impedance measurement results remained identical when the position of the orifice with sharp square
edged was inverted with respect to the flow direction.
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Microphones

Manometer

Fig. 4 Sketch of the experimental setup.

B. Acoustic-forcing amplitude
In the experiments, a forcing amplitude was applied using the upstream speaker (as sketch in Fig. 4). This was done

by having the user set a forcing voltage 𝑉frc target. The actual harmonic pressure fluctuation was measured by means of
the calibrated microphone 50 mm upstream of downstream side of the orifice. A feedback system tuned 𝑉frc to keep |𝑝′ |
constant as the frequency was stepwise changed.

The relative velocity-forcing amplitude can be determined, using

|𝑢′frc |
𝑈orf

=
|𝑝′ |

𝜋𝜌𝑈2
orf |�̄� |

(19)

One notes that |�̄� | is a function of the forcing frequency (or the Strouhal number Ω). Two order-of-magnitude limits of
|𝑢′frc |/𝑈orf , can be explored: the high-frequency and the low-frequency limits.

Let us start with the high-frequency limit. In this limit �̄� is dominated by the inertia �̄�𝐼 , which in turn is of the
order-of-magnitude of Ω. One finds:

lim
Ω→∞

|𝑢′frc |
𝑈orf

=

( |𝑢′frc |
𝑈orf

)
hfl

≃ 1
𝜋Ω

|𝑝′ |
𝜌𝑈2

orf
(20)

Moving to the low-frequency limit, one applies Bernoulli’s quasi-steady equation (𝑝orf = 𝜌𝑈2
orf/2), one has

𝑈orf ± 𝑢′frc =

√︄
2 (𝑝orf ± 𝑝′)

𝜌
≃ 𝑈orf

(
1 ± 𝑝′

𝜌𝑈2
orf

)
(21)

one finds

lim
Ω→0

|𝑢′frc |
𝑈orf

=

( |𝑢′frc |
𝑈orf

)
lfl
≃ |𝑝′ |

𝜌𝑈2
orf

(22)

Ergo, going forward |𝑝′ | = |𝑝′ |/(𝜌𝑈2
orf) will be used as an indication for the order-of-magnitude of |𝑢′ |/𝑈orf .

C. Experimental determination of the transfer impedance
The transfer impedance was determined using the approach described in more detail by Aulitto et al. [40]. It is

based on the measurement of the reflection coefficient with and without the presence of an orifice—also referred to as
a “sample”—at 𝑥 = 0. Indeed, the sample could be replaced by a ring to create a smooth open pipe. The reflection
coefficient of the open pipe, 𝑟𝑜 and the reflection coefficient with the presence of an orifice, 𝑟𝑠 were measured using the
method described in Jang and Ih [41].

The dimensionless radiation impedance of the open pipe was calculated using

�̄�𝑜 =
1 + 𝑟𝑜

1 − 𝑟𝑜
(23)
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(a) (b)

(c)

Fig. 5 Sharp-edged orifice compared compressible LNSE simulation compared to Fabre’s et al. incompressible
LNSE results for 𝑅𝑒orf = 1.2 × 103: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω (c) �̄�𝐼/(𝛼corΩ) vs. Ω.

and the same expression was used to determined the impedance in the presence of a perforated plate

�̄�𝑠 =
1 + 𝑟𝑠

1 − 𝑟𝑠
(24)

The transfer impedance was then determined as follows

�̄�orf = �̄�𝑜 − �̄�𝑠 (25)

IV. Results
Most of the numerical simulation results presented here, were obtained with the compressible LNSE code described

in §II.B.2. However, in §IV.A results for the sharp-edged orifice case are compared to simulations obtained with an
incompressible LNSE code described by Fabre et al [3, 4]. In §IV.C, LNSE results are compared to original empirical
data obtained using the experimental setup and approach briefly described in §III. All results in this section were
obtained with 𝑅𝑒orf = 1.2 × 103,the reported measurements were also obtained for this Reynolds number. Under these
circumstances the flow within the orifice is expected to be laminar, as assumed in the theoretical model.

A. Comparison of compressible and incompressible LNSE results
In Fig. 5 results for sharp-edged orifice (Fig. 2(a)) obtained with the compressible LNSE code described in §II.B.2

are compared to results obtained with an incompressilbe LNSE code (the incompressible LNSE code was developed and
used for investigations by Fabre et al. [3, 4]). One observes three minima of the real part of the impedance corresponding

10
This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

(a) (b)

Fig. 6 Rounded-inlet orifice compared to the sharp-edged orifice compressible LNSE simulation results for
𝑅𝑒orf = 1.2 × 103: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

to the first three hydrodynamic modes. The first mode (at Ω ≃ 0.7) has no whistling potentiality as the minima remains
positive. The second (Ω ≃ 2.5) and third (Ω ≃ 4.7) hydrodynamic mode have a strong whistling potentiality.

One should note that the results produced with the incompressible LNSE code were obtained with a different
computational domain and boundary conditions. Indeed, for the incompressible case the boundary condition imposed at
BC(5) in Fig. 3, were—excluding the plate and orifice were a no-slip condition was imposed—slip boundary conditions.
Moreover, I.e., the results for the incompressible case are a model for a sharp-edged orifice in a plate between an
upstream duct of radius 5𝑅orf and a downstream unducted space.

In Fig. 5(a), one observes that the results for the real part of the transfer impedance, �̄�𝑅, overlap within ca. 1%.
In Fig. 5(b) one observes a deviation of not more than 22% in, �̄�𝐼/Ω, the imaginary part of the transfer impedance

divided by the Strouhal number. This deviation is due to a confinement effect on �̄�orf,𝐼 . Indeed, using Fok’s formula
[42] the incompressible LNSE result can be corrected for this confinement effect by dividing the imaginary part of the
transfer impedance by a correction factor 𝛼cor = 1.073. The result is shown in Fig. 5(c), one notes that there is overall
much better agreement between the results of the two flow simulations. Moreover, the maximum deviation—at the
first local minimum or hydrodynamics mode—is reduced to not more that 14% when applying this correction. This
significant reduction indicates that the difference in �̄�orf,𝐼 is mainly due to confinement effects. We concluded that for
the LNSE simulations the fact that the downstream side is ducted or unducted does not play a major role.

The fact that the real part of the impedance is not affected by the confinement indicates that, the dissipation or
production of sound occurs locally within the orifice or in a region close to the exit of the orifice. Indeed, the dissipation
is related to the modulation of the shear layer at the flow separation point at the orifice inlet. Sound production is related
to the exit of the perturbed shear layer from the orifice. The imaginary part of the impedance corresponding to the
inertia of the flow is less concentrated and therefore more sensitive to confinement.

B. Parameter variation: compressible LNSE simulation results
In Fig. 6, simulation results are shown for the rounded inlet geometry (2(b)). 𝑅ust/𝑅orf was varied from 1/40 to

2. The results are compared with the sharp-edged orifice case (thickest solid black line). One observes in Fig. 6(a)
that rounding the even a little bit—e.g. 𝑅ust/𝑅orf = 1/40—drastically diminishes, by ca. a factor two, the whistling
potentiality of the orifice. Indeed, for 𝑅ust/Rorf > 1/20 𝑍orf,𝑅 > 0; i.e. the results for 𝑅ust/Rorf > 1/20 indicate that the
whistling potentiality vanishes. This confirms and extends the results obtained by Guzman-Iñigo et al. [5].

Results, for the rounded outlet geometry (Fig. 2(c)) are shown in Fig. 7. 𝑅dst/𝑅orf was varied logarithmically from
1/10 to 2. The results are compared to the sharp-edge orifice case (thickest solid black line). One observes, in Fig. 7(a),
that as 𝑅dst/𝑅orf > 4/10 the first hydrodynamic mode (minimum of the real part of the transfer impedance) emerges as
the only source of whistling potentiality. Indeed, 𝑅dst/𝑅orf > 4/10 the second minimum in �̄�orf,𝑅 vanishes.

In Fig. 8, results for the convergent-divergent nozzle orifice (Fig. 2(d)) are shown in Fig. 8. 𝜃dif was varied from
0.00 rad to 1.18 rad. One observes as expected an absence of predicted whistling potentiality for 𝜃dif = 0. This
corresponds to the configuration in Fig. 2(b). As 𝜃dif is increased, one observes the emergence of a dominant first
hydrodynamic mode (minimum in �̄�orf,𝑅) (Fig. 8(a)).
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(a) (b)

Fig. 7 Rounded-outlet orifice response compared to that of the sharp-edged orifice compressible LNSE simulation
results for 𝑅𝑒orf = 1.2 × 103: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 8 Transfer impedance for convergent-divergent nozzle geometry compressible LNSE simulation results for
𝑅𝑒orf = 1.2 × 103 as a function of the Strouhal numberΩ: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 9 Convergent-divergent nozzle geometry compressible LNSE simulation hydrodynamic modes for 𝑅𝑒orf =
1200: (a) �̄�𝑅,min vs. 𝜃dif (b) Ωmin vs. 𝜃dif
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(a) (b)

Fig. 10 Sharp-edged orifice measurements compared to compressible LNSE results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

In Fig. 9(a), the first and second minima in �̄�orf,𝑅 are shown as a function of 𝜃dif . The Strouhal number at which
these minima occur, Ωmin, are plotted as a function of 𝜃dif in Fig. 9(b). One notes that the first and second minima
occur at Ωmin ≃ 1.25 and Ωmin ≃ 2.9, respectively. Moreover, one notes that the results predict an optimum in whistling
potentiality of the first hydrodynamic mode for 𝜃dif = 0.52 rad, while the second hydrodynamic mode remains silent for
the conditions investigated.

Thus, the shape of an orifice can be changed in order to optimize predicted whistling potentiality. We note that
the possibility for a whistling potentiality of the third hydrodynamic mode is obtained for the sharp edged orifice at
sufficiently high Reynolds numbers.

C. Comparison of numerical and experimental results
All the experimental and numerical simulation results reported here were obtained with 𝑅𝑒orf = 1.2 × 103.
In Fig. 10, experimental results obtained with the sharp-edged orifice are compared to those of the compressible

LNSE model. The experimental results were obtained with four dimensionless-forcing amplitudes 𝑝′ = 0.11 (thick
dotted line), 0.26 (thick dashed-dotted line), 0.53 (thick dashed line) and 2.63 (thick solid line). One notes that the
signal is affected by noise for 𝑝′ = 0.11 at higher Strouhal numbers, to wit, Ω > 5. However, for 𝑝′ = 0.11 and Ω < 5
the signal is quite clean. Moreover, a clear dependence of the experimental results on 𝑝′ is observed. E.g., one notes
for 𝑝′ = 0.11 and 0.26—although the real part of the transfer impedance is very nearly identical— on the second
hydrodynamic mode at Ω ≃ 2.5 a significant deviation of ca. 14% in the inertial part 𝑍orf,𝐼/Ω. While for 𝑝′ = 0.53 the
real and imaginary parts of the transfer impedance follow the global trends of the lower amplitude results, the highest
amplitude 𝑝′ = 2.63 display drastically different behavior. Moreover, for 𝑝′ = 2.63 whistling potentiality is completely
suppressed. At these high amplitudes the acoustic velocity amplitude within the orifice becomes comparable to the
steady flow velocity. Acoustically induced back flow might occur.

We note that that LNSE model prediction (thin solid line in Fig. 10) deviates structurally from the empirical data.
E.g., the Strouhal number prediction for the second hydrodynamic mode deviates by ca. −17%.

The experimental results for a rounded inlet, 𝑅ust/𝑅orf = 2, are compared to the compressible LNSE model
predictions (thin solid line) in Fig. 11. The thick dotted, thick dashed-dotted, thick dashed, and thick solid line are for
𝑝′ = 0.11, 0.26, 0.53 and 2.63, respectively. One sees that 𝑍orf,𝑅 for 𝑝′ = 0.11 and Ω > 5 is dominated by noise. It is
interesting to note that for �̄�orf,𝑅 is basically amplitude independent. A difference in �̄�orf,𝐼 for 0.5 < Ω < 3 is observed
between 𝑝′ = 2.63 and the lower forcing amplitudes. One notes, that the LNSE model predictions for �̄�orf,𝐼/Ω differ
wildly from the experimental results. That said, one observes that both the LNSE model and the measurements for all
four 𝑝′ show a completely suppressed whistling potentiality for 𝑅ust/𝑅orf = 2.

Experimental results for the rounded-outlet orifice are shown in Fig. 12 for 𝑝′ = 0.11 (thick dotted line), 0.26
(dashed dotted line), 0.53 (thick dashed line), 2.63 (thick solid line). The results obtained with 𝑝′ = 0.11 for Ω > 5
are dominated by noise. It is interesting to note that the highest forcing amplitude suppresses the orifice’s whistling
potentiality. Although quantitative agreement between the empirical data and the LNSE model is observed, obvious
quantitative differences are discernible in e.g. the prediction of Ω for the first hydrodynamic mode.
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(a) (b)

Fig. 11 Rounded-inlet sharp-edged outlet orifice, 𝑅ust/𝑅orf = 2, measurements compared to compressible LNSE
results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 12 Sharp-edged inlet rounded-outlet orifice, 𝑅dst/𝑅orf = 2, measurements compared to compressible LNSE
results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.

(a) (b)

Fig. 13 Convergent-divergent nozzle orifice, 𝜃dif = 0.52 rad, measurements compared to compressible LNSE
results: (a) �̄�𝑅 vs. Ω (b) �̄�𝐼/Ω vs. Ω.
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Experimental and LNSE model results for the convergent-divergent nozzle orifice are shown in Fig. 13. Experimental
data for 𝑝′ = 0.11 (thick dotted line), 0.26 (thick dashed dotted line), 0.53 (thick dashed line) and 2.63 (thick solid line)
are shown. One noted that the signal for 𝑝′ = 0.11 with a Strouhal number above 5 is dominated by noise. That said, the
experimental results for 𝑝′ = 0.11 and 0.26 are discerned to be essentially the same. This indicates that the results are in
the linear regime. Notably, the whistling potentiality of the orifice appears to be suppressed for the highest forcing
amplitude 𝑝′ = 2.63. In spite of the fact that qualitative agreement between the empirical data and the LNSE model is
observed, clear quantitative differences are discernible in e.g. the prediction of Ω for the first hydrodynamic mode.

V. Discussion
The influence of an orifice’s shape on its transfer impedance and by extension its whistling potentiality, were

investigated using a LNSE model and experimentally. Four cylindrical orifice shapes were considered: a sharp-edged
(inlet and outlet) orifice, a rounded-inlet sharp-edged outlet orifice, a sharp-edged inlet rounded outlet orifice, and a
convergent-divergent nozzle orifice. The thickness of the plate containing the orifice, 𝐿orf , was twice the minimum
radius, 𝑅orf of the orifice; viz., 𝐿orf = 2𝑅orf . The individually probed orifices were subject to a bias flow, which was
fixed such that the Reynolds number based on the orifice neck diameter 2𝑅orf was 𝑅𝑒orf = 1.2 × 103.

The experimental and simulation results for sharp-edged orifice confirm that the second hydrodynamic mode—viz.,
the second and most pronounced local minimum in the real part of the transfer impedance of the orifice—has the largest
whistling potentiality. This is in agreement with the experimental observations of Testud et al. [15] and Moers et al.
[19]. The fact that they have a higher whistling potentiality than the first mode is due to the fact that at low Strouhal
numbers the amplification of the perturbations by the shear layer perturbations increases exponentially with the ratio of
shear layer length to hydrodynamic wavelength. Hence, the second hydrodynamic mode corresponds to an amplification
of perturbations, which is the square of the amplification for the first mode. The fact that the third mode does not have a
much larger whistling potentiality is due to the reduction of the amplification at higher Strouhal numbers. As predicted
by Michalke [43], there is a critical Strouhal number based on the shear layer thickness above which the shear layer is
hydrodynamically stable. This effect is therefore Reynolds dependent, as illustrated by the results presented by Fabre et
al. [4] for the same orifice geometry. An interesting result obtained by Fabre et al. [4] is that the Strouhal number of the
hydrodynamic modes is only weakly dependent on the Reynolds number and that when the plate thickness is used as
reference length instead of 𝑅orf the Strouhal number becomes almost independent of the plate thickness. A systematic
study of the Reynolds number and plate thickness on the Strouhal number for the first two hydrodynamic modes is
provided by Testud et al. [15]

In the case of the rounded-inlet sharp-outlet orifice, the results show that even for minor rounding 𝑅ust/𝑅orf = 1/40
the whistling potentiality —i.e., compared to for 𝑅ust/𝑅orf > 1/10 the whistling potentiality is essentially suppressed.
These findings confirm and extend those found by Guzman-Iñigo et al. [5].

Results for the sharp-inlet rounded outlet orifice show that rounding of the outlet affects the whistling potentiality
of the orifice significantly. Indeed, for 𝑅dst/𝑅orf > 4/10 the orifice’s whistling potentiality is shifted to the first
hydrodynamic mode. I.e., rounding the downstream edge, whilst keeping the upstream edge sharp, enhances the
whistling potentiality of the first hydrodynamic mode—yet reduces that of higher modes. It is noteworthy that Vortex
Sound Theory qualitatively predicts this. Moreover, this confirms that the notion that sound production can only occur
through impingement on e.g. a sharp-downstream edge is inadequate.

In the case of the convergent-divergent nozzle geometry, the first hydrodynamic mode was found to dominate its
whistling potentiality. Moreover, the difussor angle, 𝜃dif , was varied systematically whilst keeping all other parameters
of the problem fixed. For 𝜃dif = 0.52 an optimum in whistling potentiality was found. I.e., a orifice’s shape can be
changed to optimize its whistling potentiality. For diffusers (conical pipe diameter expansion) in gas transport systems,
van Lier et al. [35] also found a large whistling potentiality at an angle of this magnitude.

In the experiments, the forcing-amplitude, |𝑝′ |, was varied. Overall, one observes a dependence of the results on the
amplitude for 𝑝′ > 0.26. I.e, results obtained with 𝑝′ > 0.26 are in the nonlinear regime.

Obviously, the nonlinear regime is formally outside of the LNSE model’s application regime. That said, generally
remarkable qualitative agreement is observed between the LNSE and experimental data. Notably, in some instances this
qualitative agreement extends to experimental data in the nonlinear regime.

However, a structural quantitative deviation between the LNSE predictions and experimental data in the linear
regime is noted. E.g., in the case of a sharp-edged orifice—even though �̄�orf,𝑅min is well predicted for the second
hydrodynamic mode, viz., within a few percent—the corresponding Strouhal number deviates by ca. 17%. Moreover,
the observed imaginary part was at high Strouhal numbers systematically lower than the predicted values.

15
This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

Interestingly, the highest forcing amplitude, 𝑝′ = 2.63, was observed to suppress whistling potentiality. This can
obviously not be predicted with a LNSE model.

VI. Conclusions
The shape of an orifice subject to a bias flow can significantly affect its transfer impedance and ergo its whistling

potentiality. Moreover, an orifice’s geometric parameters can be manipulated to optimize its whistling potentiality. It
was experimentally observed that high forcing amplitudes suppress whistling potentiality. While the real part of the
impedance (resistance) is not affected by the confinement of the orifice within a pipe, the imaginary part (inertance) is.

A. Flow controller calibration
The flow controller (Bronkhorst F202Av) used to set the volume flow was calibrated against a static pressure

difference measurement at the highest available flow rate for the orifice with upstream rounded edge 𝑅ust = 2𝑅orf
(without any acoustic forcing). These measurements were corrected for the influence of the displacement thickness of
the viscous boundary layers. For moderately high Reynolds numbers 𝑅𝑒orf = 9 × 103 as used for this calibration the
boundary are laminar and rather thin compared to 𝑅orf .

Using the method of Thwaites, one can determine the square of the momentum thickness

𝛿2
2 =

0.45𝜈
𝑈6

ˆ 𝐿orf

0
𝑈5d𝑥 (26)

where 𝑥 is the axial coordinate. Moreover, one has that

𝛿1 = 𝐻12 (𝐿orf)𝛿2 (27)

where 𝐻12 (𝐿orf) = 2.61 for (d𝑈/d𝑥)𝑥=𝐿orf = 0, as prevails at the exit of this orifice.
Assuming a quasi-1D flow across the rounded-inlet orifice (Fig. 2(b)) and neglecting the displacement thickness 𝛿1,

one finds for the axial velocity

𝑈 =

(
𝑅orf
𝑅

)2
𝑈orf (28)

where

𝑅 = 𝑅orf + 𝐿orf −
√︃
𝐿2

orf − (𝐿orf − 𝑥)2 (29)

Eq. (26) can now be rewritten to find

𝛿2
2 =

0.45𝜈
𝑈orf

𝑅orf

ˆ 𝐿orf/Rorf

0

(
𝑅orf
𝑅

)10
d
(

𝑥

𝑅orf

)
(30)

We defined the integral

𝐼 ≡
ˆ 𝐿orf/Rorf

0

(
𝑅orf
𝑅

)10
d
(

𝑥

𝑅orf

)
(31)

which using Mathematica was found to be 𝐼 = 0.57. Using Eq. (27), one finds

𝛿1
𝑅orf

= 𝐻12 (𝐿orf)

√︄(
2 × 0.45
𝑅𝑒orf

𝐼

)
(32)

We define

𝛼tws = 1 − 2𝛿1
𝑅orf

(33)

and note that

16
This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


This is the authors’ pre-print version of the manuscript, presented at the 28th AIAA/CEAS conference June 14th–17th 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

𝑈orf = 𝛼𝑡𝑤𝑠𝑈max (34)

where 𝑈max is the maximum velocity on the center line at the rounded inlet orifice’s outlet. Using Bernoulli one finds

𝑈max =

√︄
2Δ𝑝
𝜌

(35)

The static pressure difference, Δ𝑝, measured by means of a TROTEC TA400 manometer (Fig. 4) across the
rounded-inlet orifice (Fig. 2(b)) can now be related to the volumetric flow through it:

¤𝑄msr = 𝜋𝑅2
orf𝛼tws𝑈max = 𝜋𝑅2

orf𝛼tws

√︄
2Δ𝑝
𝜌

(36)

Using the interface with the flow controller a volumetric flow, ¤𝑄set, can be set. ¤𝑄set = 1.31 × 10−3 m3 · s−1 was set
(90% of the highest imposable volumetric-flow rate) and the corresponding Δ𝑝 = 119 Pa was determined (uncertainty 1
Pa). One finds 𝑈orf ≃ 𝛼tws𝑈max = 13.3 m · s−1, which yields 𝑅𝑒orf = 2𝑅orf𝑈orf/𝜈 = 8.87 × 103. Using Eqs. (32) and
(36), one can determine 𝛼tws = 0.960 and the calibration coefficient:

¤𝑄msr
¤𝑄set

= 0.81 (37)
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