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Abstract

A systematic approach to parametrically analyze compressible time-periodic flows is proposed. Instead of time-stepping
imulations, a Fourier–Galerkin strategy is adopted, which consists of the projection of the periodic solution onto a truncated
ourier series. Starting from the compressible Navier–Stokes equations, a truncated nonlinear problem coupling the 2N + 1
elds, representing the Fourier discretization, is derived. This nonlinear problem is solved by Newton iteration and a set of
fficient algorithms for the resolution of the arising inner linear systems is proposed. Compared to alternative methods, the
ormulation is free of any numerical constraint affecting performance, e.g. a CFL-like condition. It is also free of aliasing
ffects arising in other spectral techniques. The efficiency of the method is illustrated for two configurations where sound is
adiated due to a flow instability, namely the flow around a circular cylinder and the flow through two successive apertures,
.e. the hole-tone configuration.

2022 Elsevier B.V. All rights reserved.
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1. Introduction

Many fluid dynamics problems are characterized by the spontaneous emergence of time-periodic solutions. The
lassical approach in the studying of periodic states is to perform time integration of the governing equations up to
onvergence to a stable (unstable) limit cycle. However, this approach can become rapidly very expensive in some
ircumstances. For instance, it is notably inefficient near bifurcations leading to unsteadiness where transients can
e lengthy. It is also unsuited to cases where the underlying physics imposes tiny time steps. This situation is met
or example with compressible, low-Mach-number limit flows involving acoustic radiation, where a severe time-step
estriction is imposed by the large separation in convective and acoustic velocity scales.

Several ideas have been proposed to speed-up the convergence of time-stepping towards a limit cycle, for instance,
sing time filters [1] or considering symmetries [2]. However, the efficiency of such approaches remains case-
ependent. An alternative idea is to take advantage of the time periodicity of the expected solution by applying
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spectral techniques to the time discretization and directly solving for the entire cycle. The problem may be worked
out either in spectral or time domain, leading to two distinct classes of methods.

In the first case, formulating the problem in the spectral domain leads to the Harmonic Balance (or Fourier–
alerkin) formulation, a representation of the cycle by a truncated Fourier series up to N th order. The Navier–Stokes

equations are then written in spectral space, leading to a system coupling the 2N + 1 Fourier components. This
last system can be solved globally using, for instance, a Newton iteration. This method is useful for the study of
low-dimensional systems of equations modeling mechanical problems [3]. Recently, an alternative formulation of
the Harmonic-Balance called self-consistent method has been introduced for order N = 1 [4,5] and subsequently
dapted to order N = 2 [6]. Self-consistent method has gained some popularity in the fluid instability community
see [7] for a discussion on the link between harmonic-balance and self-consistent method). Besides a description of
he limit cycle, the self-consistent method yields an amplitude equation describing the transient dynamics towards
t. A generalization of the method to compressible flows was proposed by [8] for the wake of a cylinder. However,
he accuracy of the truncation to order N = 1 remains case-dependent. A general implementation of the Harmonic
alance method in frequency domain for compressible flows up to arbitrary order N is still missing.

Alternatively, the problem may be formulated in time, leading to the so called time-spectral method. In this case,
he 2N + 1 Fourier components are replaced by 2N + 1 “snapshots” representing the cycle. The equations are
valuated in the time domain, but the time-derivative is computed in the frequency domain, thus requiring direct
nd inverse discrete Fourier transforms to pull back this term into the time domain. Time Spectral Method has
een successfully used for the characterization of high Reynolds flows in the field of turbomachinery, e.g. Hall
t al. [9] and Mavriplis et al. [10], where it is considered as a closure model of averaged equations, or an
lternative to Unsteady Reynolds Averaged Navier–Stokes equations (URANS) (see Ekici et al. [11], Sicot et al. [12]
nd references therein). Recently, it has been extended for the treatment of free-surface flows and fluid structure
nteraction problems (see Gatin et al. [13] and Yao et al. [14]).

Despite their limited usage in the literature, the Fourier–Galerkin formulation presents a series of advantages
egarding other approaches requiring the action of the discrete Fourier transform cf. [15]. First, the approach is free
f aliasing errors because the projection onto the Fourier basis is analytical, i.e. it evaluates the analytical Fourier
oefficients of the residual. On the contrary, Time-Spectral-Method (TSM) and other similar methodologies rely on
ampling a series of time-instants and on the use of successive discrete Fourier transforms, which if in one hand may
ermit faster evaluations of the residual in case of strong nonlinearity on the other it will inherently add aliasing
rrors. Under the sampling theorem, higher harmonics of nonlinear terms cannot be resolved with the same number
f samples used for linear terms. As a result, methods relying on the discrete Fourier transform must increase the
umber of degrees of freedom, e.g. the 3/2-rule of Orszag for quadratic nonlinearity [16].

Furthermore, the solution of the TSM formulation may be solved by a fixed-point algorithm, e.g. Newton method
or by a pseudo-time marching strategy. In fluid mechanics, in particular for turbomachinery applications, a pseudo-
time marching is the preferred strategy to compute the final periodic solution. This strategy is effective at moderate
Mach numbers. Nonetheless, at low-Mach-number, where there is a large scale difference between the convective
and the acoustic scale, the pseudo-time step must be considerably constrained.

An upper bound for the pseudo-time step is determined from quantities in the acoustic scale either because of
CFL or accuracy condition. Regarding the linear stability condition efforts have been paid to enlarge the stability
limit: optimal explicit Runge Kutta (ERK) schemes have been determined for several spatial discretization. Examples
can be found in the works by Parsani et al. [17] for spectral differences, Citro et al. for classical finite element [18]
and Kubatko et al. [19] for discontinuous Galerkin. Nevertheless, the integration of Navier–Stokes equations, even
with optimal ERK schemes, requires a significant number of iterations, which makes a full parametric study of low
Mach number flows an impractical task.

The aim of the present study is to propose a numerical resolution algorithm for the Fourier–Galerkin method
considering an arbitrary truncation order N , allowing an efficient reconstruction of periodic solutions of the
compressible Navier–Stokes equations. Governing equations and linear stability are introduced in Section 2. Fourier–
Galerkin approach is introduced in Section 3, where particular emphasis is placed on the derivation of nonlinear
terms of the Fourier–Galerkin residual (a detailed derivation can be found in Appendix). The resulting nonlinear
problem is solved via a Newton–Krylov approach with an efficient preconditioning strategy in a parallel context.
Finally, in Section 4 and Section 5 the presented approach is applied to two numerical examples: the flow past
a circular cylinder and the sound generation in a hole tone configuration, both in the low-Mach-number limit. In
Section 5.1.2 a comparison of the performance of the current implementation of Fourier–Galerkin with TSM is

reported for the cylinder case at several Mach numbers.
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2. Theoretical formulation

Let us consider the description of nonlinear saturated states of compressible flows. The exposition is suffi-
iently general to be extended for the study of other type of flows. Nevertheless, attention will be paid to the
ourier–Galerkin representation of the quadratic and cubic nonlinearity.

.1. Governing equations

Let us consider a compressible fluid motion of a perfect gas (characterized by its specific constant Rg and
adiabatic index γ ) with constant dynamic viscosity µ and heat conductivity κ . The flow is described by the fluid
density ρ̃, the velocity vector field ũ = (ũ, ṽ, w̃), the pressure p̃, and temperature T̃ . These dimensional primitive
variables are made dimensionless as follows:

x =
x̃
ℓ̄
, t =

t̃ ū
ℓ̄

, ρ =
ρ̃

ρ̄
, u =

ũ
ū

, T =
T̃
T̄

, p =
p̃

ρ̄ R̄g T̄
, (1)

where reference values are designated by an upper bar ·̄.
After a convenient choice of the reference length ℓ̄ and velocity ū, one can classically define three nondimensional

umbers (Reynolds, Mach and Prandtl) as follows:

Re =
ρ̄ūℓ̄

µ̄
, M =

ū√
ρ̄ R̄g T̄

, Pr =
µ̄

ρ̄κ̄
. (2)

Introducing these notations into the compressible Navier–Stokes equations leads to a set of equations governing the
evolution of the nondimensional state vector q = [ρ, u, T, p]. To facilitate the analysis and enlighten the nature of
the nonlinearities, it is convenient to write these equations as follows:

NS
(
q
)

≡ M
(∂q
∂t

)
+ L

(
q
)
+ F2

(
q, q

)
+ F3

(
q, q, q

)
= 0. (3)

In Eq. (3), the “mass” matrix M multiplying the time-derivative and the linear operator L are defined as:

M =

⎛⎜⎜⎝
1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

⎞⎟⎟⎠ , L =

⎛⎜⎜⎝
0 0 0 0
0 −∇ · τ (·) 0 1

γ M2 ∇

0 0 −
γ

Pr ∇
2 0

0 0 0 1

⎞⎟⎟⎠ (4)

The nonlinear terms involve a quadratic operator F2 and a cubic operator F3 defined as:

F2
(
qi , q j

)
=

⎛⎜⎜⎜⎝
ui · ∇ρ j + ρi∇ · u j

0
(γ − 1)

[
pi∇ · u j − γ M2τ (ui ) : D(u j )

]
−ρi T j

⎞⎟⎟⎟⎠ (5)

F3
(
qi , q j , qℓ

)
=

⎛⎜⎜⎝
0

ρi u j · ∇uℓ

ρi u j · ∇Tℓ

0

⎞⎟⎟⎠ (6)

n these expressions, I denotes the identity operator, whose dimension is determined by the number of velocity
omponents; τ (u) is the shear stress tensor τ (u) =

1
Re

[
2D(u) −

2
3

(
∇ · u

)
I
]

and D(u) =
1
2

[
∇u + ∇uT

]
is the strain

ensor. Additionally a set of boundary conditions are needed to close the problem. Specific boundary conditions are
ase dependent and they are not here specified.

It is important to remark that, unlike incompressible flows where only quadratic nonlinearities are present,
ompressible Navier–Stokes equations contain both quadratic and cubic nonlinearities. In particular, the term ρu·∇u,
hich for incompressible equations is the only nonlinearity and a quadratic one, becomes a cubic nonlinearity in

he compressible case. This point explains why a derivation of equations in Fourier–Galerkin method is much more

ntricate.
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To facilitate derivations in following sections, it is convenient to define symmetric nonlinear operators:

F(sym)
2

(
qi , q j

)
=

[
F2

(
qi , q j

)
+ F2

(
q j , qi

)]
, (7)

F(sym)
3

(
qi , q j , qℓ

)
=

[
F3

(
qi , q j , qℓ

)
+ F3

(
qi , qℓ, q j

)
+ F3

(
q j , qi , qℓ

)
+ F3

(
qℓ, qi , q j

)
+ F3

(
q j , qℓ, qi

)
+ F3

(
qℓ, q j , qi

)]
(8a)

With the aim of a simpler description of Fourier–Galerkin formalism, please note that dyadic interactions
(interactions between two modes) are also possible whenever the tryadic nonlinear term F(sym)

3 contains the mean
flow and other two harmonics, introduced in Section 3. So, in general dyadic interactions arise in the nonlinear
term,

F(dya)
2

(
qi , q j

)
= F(sym)

2

(
qi , q j

)
+ F(sym)

3

(
qi , q j , q0

)
. (9)

2.2. Linear stability

Before presenting the methodology used to compute a periodic cycle in the nonlinear regime, we recall the
principle of Linear Stability Analysis (LSA) [20], which is the favored tool to detect the onset of such cycles from
a previous steady state. Accordingly, LSA will be used in Section 5.1.1 to detect the critical Reynolds numbers
associated with unsteadiness. Presentation of the LSA formalism also allows to introduce some notations which are
used in the sequel.

The linear stability of compressible flows can be studied with a classical normal-mode analysis: the velocity and
pressure fields are decomposed into a time-independent base flow, i.e. a steady-state, q0 = [ρ, u0, T0, p0], and a
generic three-dimensional small disturbance q′

=
[
ρ ′, u′, T ′, p′

]
. After introducing this decomposition into Eq. (3)

and linearizing, it is found that the base flow is governed by the steady version of the Navier–Stokes equations,
whereas the perturbation field is described by the linearized unsteady Navier–Stokes equations (LNSE) written as
follows:

M|q0

∂q′

∂t
+ Lq′

+ F(sym)
2

(
q0, q′

)
+

1
2

F(sym)
3

(
q0, q0, q′

)
= 0, (10)

here M|q0 = diag(1, ρ0I, ρ0, 0) denotes the mass matrix evaluated at the steady state.
Global modes are modal non-trivial solutions of Eq. (10), which are expressed as follows:

q′
= q̂ℓ eλℓt

+ c.c., (11)

here λℓ corresponds to the complex eigenvalue (σℓ + iωℓ) and c.c. stands for complex conjugate and q̂ℓ is the
associated eigenmode. The real part of λℓ represents the growth rate of the perturbation and the imaginary part
ωℓ its circular frequency. For σℓ > 0, the flow is unstable whereas for σℓ < 0 it is stable. Introducing the ansatz
Eq. (11) in the LNSE Eq. (10), we obtain the following generalized eigenvalue problem:

0 = λℓM|q0 q̂ℓ + LNS |q0

(
q̂ℓ

)
(12)

with

LNS |q0

(
q̂ℓ

)
≡ Lq̂ℓ + F(sym)

2

(
q0, q̂ℓ

)
(sym)( ) (13)
+ F3 q0, q0, q̂ℓ

4
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3. Fourier–Galerkin method for Navier–Stokes equations

3.1. Fourier–Galerkin residual equation

Fourier–Galerkin method employs a truncated Fourier basis FN , which is inherently periodic, thus perfectly
suitable for the reconstruction of the periodic flow state:

πN (q) ≡ q̌(0) +
∑N

n=1

[
q̌((n,c)) cos(nωt) + q̌((n,s)) sin(nωt)

]
≡ Q̌TFN

with FN =
[
1, cos(ωt), sin(ωt), . . . , cos(Nωt), sin(Nωt)

]T

and Q̌ =
[
q̌(0), q̌((1,c)), q̌((1,s)), . . . , q̌((N ,c)), q̌((N ,s))

]T
,

(14)

where πN is the projector operator onto the Fourier basis FN ; q̌((n,c))(x) and q̌((n,s))(x) are the coefficients of
the Fourier series, in other words, they are two real nth-order harmonics describing the nonlinear perturbation
at two instants separated by a quarter-period of oscillation. The projection πN onto a finite Fourier basis FN
introduces an error, nonetheless for smooth functions (C∞(0, T )) such an error decreases with an exponential rate,
i.e. ∝ e−C N , C > 0 with the number of harmonics N retained in the basis [21, Lemma 2.2].

The first step to obtain Fourier–Galerkin equations consists on the injection of the ansatz (14) into the unsteady
Navier–Stokes equations (3). A Galerkin procedure is thus employed, i.e. the previously obtained equation is
weighted with each term of the Fourier basis and then integrated over a period. Such a process is summarized
below:

NS
(
q
) Fourier

−−−−−→
projection

NS
(
πN (q)

) Weighted
−−−−→

residual

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ř(0)
=

1
T

∫ T

0
NS

(
πN (q)

)
dt

ř(n,c)
=

2
T

∫ T

0
NS

(
πN (q)

)
cos(nωt) dt

ř(n,s)
=

2
T

∫ T

0
NS

(
πN (q)

)
sin(nωt) dt

Finally, the residual vector Ř =
[
ř(0), ř(1,c), ř(1,s), . . . , ř(N ,c), ř(N ,c)

]T is equated to zero, i.e. Ř = 0. In particular,
the Fourier–Galerkin residual of the compressible Navier–Stokes equations written in primitive variables is expressed
in compact operator notation as follows:

ř(0)
= LNS |q̌(0)

(
q̌(0)

)
+ F̌(0)

2

(
Q̌

)
+ F̌(0)

3

(
Q̌

)
(15a)

ř(k,c)
= kωM|q0 q̌(k,s) + LNS |q̌(0)

(
q̌(k,c)

)
+ F̌(k,c)

2

(
Q̌

)
+ F̌(k,c)

3

(
Q̌

)
(15b)

ř(k,s)
= −kωM|q0 q̌(k,c) + LNS |q̌(0)

(
q̌(k,s)

)
+ F̌(k,s)

2

(
Q̌

)
+ F̌(k,s)

3

(
Q̌

)
(15c)

Linear terms contained in the operator LN S uniquely consist of interactions among harmonics of the same order
and the mean flow. Dyadic and triadic interactions among harmonics are encoded in the nonlinear operators F̌(k)

2 and
F̌(k)

3 . For instance, F̌(0)
2 and F̌(0)

3 , are the feedback terms among harmonic interactions and the mean flow. Similarly
F̌(k,c)

2 and F̌(k,c)
3 (resp. F̌(k,s)

2 and F̌(k,s)
3 ) are the forcing terms of the kth cosine (resp. sinus) harmonic component.

Interactions among different harmonics greatly increase with the degree of non linearity of the nonlinear operator.
A detailed description of nonlinear terms may be found in Appendix. Eq. (15a) corresponds to the evolution of
the mean flow component q̌(0).

In addition to the 2N +1 unknown fields constituting the Fourier expansion, the problem admits one extra scalar
unknown, namely the frequency ω. The determination of the frequency it is equivalent to the determination of the
period T =

2π
ω

, which is measured as the distance in time between two solution points satisfying πN (q)(t + T ) =

πN (q)(t). In addition, the problem is autonomous, which implies that for every phase shift ξ , πN (q)(t + ξ ) is a
solution of the system whenever πN (q)(t) is a solution. Therefore one can start measuring the period T at any
solution point q(t + ξ ) along the periodic orbit; in other words, the phase-condition that fixes the phase-shift ξ , it
is an implicit equation of ω that serves to determine the unknown frequency. Any condition of the form g(Q̌) = 0

here g is a linear function of the unknown fields can be used for this purpose. In practice, one can define the
unction g so as to coincide with a physically relevant integral quantity of the oscillating field at instant t = 0.
or instance, for wake instability problems (Section 5.1.1) one can use the lift force exerted on the body, or for
5
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oscillating jet problems (Section 5.2), one can use the oscillating flow rate across the aperture. At this stage we keep
g(Q̌) = 0 as an arbitrary linear function of the oscillating part of the flow. This function can always be decomposed
formally as follows:

g(Q̌) =

N∑
n=1

[
g(n,c)(q̌(n,c)) + g(n,s)(q̌(n,s))

]
, (16)

where g(n,c), g(n,s) are scalar-valued linear functions of the Fourier components.

3.2. Newton iteration method

Newton iteration is the chosen approach to solve the nonlinear Fourier–Galerkin system. At each step of the

procedure, starting from an estimate
[
Q̌n, ωn

]T
of the solution, we look for an improved estimate defined as:

Q̌n+1 = Q̌n + δQ̌, ωn+1 = ωn + δω. (17)

Introducing Eq. (17) into the governing equations and linearizing with respect to perturbations [δQ̌, δω] leads to
a linear system which has to be solved at each step of the procedure:

DŘ
[
δQ̌, δω

]T
= −

[
Ř(Q̌n), g(Q̌n)

]T
, (18a)

here DŘ denotes the Jacobian operator, written in block–matrix form as follows:

DŘ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dř(0;0)
· · · Dř(0;k,c) Dř(0;k,s)

· · · Dωř(0)

...
. . .

...
...

. . .
. . .

Dř(k,c;0)
· · · Dř(k,c;k,c) Dř(k,c;k,s)

· · · Dωř(k,c)

Dř(k,s;0)
· · · Dř(k,s;k,c) Dř(k,s;k,s)

· · · Dωř(k,s)

... · · ·
...

...
. . .

. . .

0 · · · g(k,c) g(k,s) · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

and Dř(k,c; j,s) denotes the derivative of the residual term ř(k,c) with respect to the sinus component of the j th
harmonic. Those block operators are defined as follows:

Dř(0)δQ̌ = LNS |q̌(0)

(
δq̌(0)

)
+

[
DF̌(0)

2|Q̌
+ DF̌(0)

3|Q̌

]
δQ̌ (20a)

Dř(k,c)δQ̌ = kωM
⏐⏐
δq̌(0)

q̌(k,s) + kωM
⏐⏐
q̌(0)

δq̌(k,s) + LNS |q̌(0)

(
δq̌(k,c)

)
+

[
DF̌(k,c)

2|Q̌
+ DF̌(k,c)

3|Q̌

]
δQ̌ (20b)

Dř(k,s)δQ̌ = −kωM
⏐⏐
δq̌(0)

q̌(k,c) − kωM
⏐⏐
q̌(0)

δq̌(k,c) + LNS |q̌(0)

(
δq̌(k,s)

)
+

[
DF̌(k,s)

2|Q̌
+ DF̌(k,s)

3|Q̌

]
δQ̌ (20c)

Dωř(0)δω = DωF̌(0)
2|Q̌

δω (21a)

Dωř(k,c)δω = δω
(
kM

⏐⏐
q̌(0)

q̌(k,s)
)
+ DωF̌(k,c)

2|Q̌
δω (21b)

Dωř(k,s)δω = δω
(
−kM

⏐⏐
q̌(0)

q̌(k,c)
)
+ DωF̌(k,s)

2|Q̌
δω. (21c)

With these notations, the action of each of the linear operators defined in Eq. (20) may be understood as the
action of a row vector:

ˇ
(k,c) [

ˇ
(k,c;0)

ˇ
(k,c;1,c)

ˇ
(k,c;1,s)

ˇ
(k,c;N ,c)

ˇ
(k,c;N ,s)]
Dr = Dr , Dr , Dr , . . . , Dr , Dr

6
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Fig. 1. Dependency pattern in the evaluation of the entry (k, j) in the derivative of each operator.

eventually leading to the block definition of the matrix defined in (19). Because the Fourier components with k ̸= 0
involve both a cosine and a sine, a given entry (k, j) of the Jacobian operator DŘ is a 2 × 2 block if k ̸= 0 and
j ̸= 0, a 2 × 1 block if k ̸= 0 and j = 0, a 1 × 2 block if k = 0 and j ̸= 0 or 1 × 1 block if k = j = 0. Each
block is computed with respect to a set of harmonics and the mean component. The dependency pattern of each
entry greatly depends on the nonlinearity of the operator: Fig. 1 schematizes the dependency stencil. Evaluation of
the linear operator LNS |q̌(0) depends uniquely on the mode k and on the mean component. Quadratic nonlinearities
include interactions with modes |k − j | and j + k. Whereas the evaluation of the nonlinear term F̌(k,s)

3 may depend
on the full set of harmonics. For more details consider the detailed description provided in Appendix.

3.3. Resolution of the linear system of equations

The critical part in the algorithm is the resolution of the linear system (18a). Here, the GMRES method is
used for the factorization of the full Jacobian DŘ. Nonetheless, such an approach requires efficient preconditioning
techniques to speed up convergence. In such a way the linear system Eq. (18a) is transformed into:

P−1 DŘ
[
δQ̌n+1, δωn+1

]T
= −P−1

[
Ř(Q̌n), g(Q̌n, t = 0)

]T
. (22)

Three outer preconditioning techniques have been considered in this study: Block Jacobi and Block Gauss Seidel
(upper and lower triangular). Let us detail these preconditioning techniques. In the following only the Fourier–
Galerkin residual is considered. The line in the Jacobian operator that corresponds to the phase condition is included
in the set of degrees of freedom of a Dř(i) block. In such a way the block composed of Dř(i) and the phase condition
is not singular and the following preconditioning techniques are applicable.

Block-Jacobi preconditioning considers only blocks that are found on the diagonal, i.e. it does not take into
account interactions with other Fourier components.

PB J (Q̌n, ωn) =

⎡⎢⎢⎢⎢⎢⎢⎣

Dř(0) . . . 0 . . . 0
...

. . .
...

0 . . . Dř(i) . . . 0
...

. . .
...

0 . . . 0 . . . Dř(N )

⎤⎥⎥⎥⎥⎥⎥⎦ (23)

Another possibility consists in the use of a Gauss–Seidel preconditioner. Upper triangular GS solves for each
component by considering interactions with only higher harmonics.

PGSU (Q̌n, ωn) =

⎡⎢⎢⎢⎢⎢⎢⎣

Dř(0) . . . Dř(0,i) . . . Dř(0,N )

...
. . .

...

0 . . . Dř((i)) . . . Dř((i,N ))

...
. . .

...
(N )

⎤⎥⎥⎥⎥⎥⎥⎦ (24)
0 . . . 0 . . . Dř
7
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Analogously, lower triangular block GS solves for every component by considering interactions uniquely with lower
harmonics.

PGSL (Q̌n, ωn) =

⎡⎢⎢⎢⎢⎢⎢⎣

Dř(0) . . . 0 . . . 0
...

. . .
...

Dř((i,0)) . . . Dř(i) . . . 0
...

. . .
...

Dř((N ,0)) . . . Dř((N ,i)) . . . Dř(N )

⎤⎥⎥⎥⎥⎥⎥⎦ (25)

he preconditioned linear operator P−1 DŘ of Eq. (22) in the case of BJ is composed of identity blocks in the
iagonal and non-null blocks off-diagonal. Such a procedure is effective when the matrix is diagonally dominant,
.g. when harmonic components are of small amplitude. Let us consider the expression of P−1 DŘ, particularized

for the above considered preconditioners:

P−1
B J DŘ = P−1

B J PGSL + P−1
B J PGSU − I (26a)

P−1
GSU DŘ = P−1

GSU PGSL − P−1
GSU + I (26b)

P−1
GSL DŘ = P−1

GSLPGSU − P−1
GSL + I, (26c)

n the above expressions the decomposition DŘ = [PGSU + PGSL − PB J ] is assumed. Preconditioners P require
he factorization of diagonal blocks Dř(i). Two methods have been considered, exact factorization (LU) and
dditive-Schwarz Method (ASM) with LU as sub-preconditioner.

.4. Initial condition

When using a Newton method, an essential point for convergence is to start the process from an initial “guess”
s close as possible to the expected solution. In parametric studies, continuation methods are commonly employed;
amely, we select as initial condition a solution previously computed for close values of the parameters and repeat
he procedure. The question remains on how to obtain a very first solution to initiate the continuation. One may start
he process for parameter values just above the threshold for the onset of the cycle, where Linear Stability Analysis
LSA) gives a good clue of the solution. The simplest idea is to take the order-zero component as the mean flow
f the LSA, namely Q̌0 = q0, set the order-one components to coincide with the linear eigenmode with some fitted
mplitude ζ , namely Q̌1,c = ζ Re(q̂), Q̌1,s = −ζ I m(q̂), and initialize all higher-order components to zero. This
ethod may need some fine hand-tuning of the amplitude ζ . A second, more elaborate method is to use Weakly
onlinear Analysis (WNL), which provides an approximation of the solution close to the threshold up to order

N = 2. This method is not detailed here; see [7] for a demonstration of this procedure in the incompressible case.

.5. Summary

To summarize this section, a concise presentation of the whole procedure used to numerically solve the problem
s given in algorithm 1.

. Numerical approach

The FreeFEM software based on a finite element method is used to solve the problem numerically. An initial
esh is generated by decomposing the computational domain in triangles via a Delaunay–Voronoi algorithm. A

ariational formulation of the problem is then built using P2 (quadratic) elements for each component of the velocity
nd P1 (linear) elements for the pressure, temperature and density. Linear systems are solved with the PETSc library
n a parallel context. The parallelization is carried out following a memory distributed paradigm. The system is
ecomposed in space into ncores partitions, where ncores is the number of cores. The 2N + 1 Fourier components
ssociated with the generic partition i are available for the processor i . Sponge regions are used to damp acoustic
aves far from the domain of interest to prevent their reflection. The definition of the sponge region is the same as

n Fani et al. [8].
8
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Algorithm 1 Fourier-Galerkin for compressible Navier Stokes

Require: Initial guess
(
Q̌0, ω0

)
. Parameters M , Re.

1: function FOURIER-GALERKIN(M, Re, Q̌0, ω0)
2: n = 0
3: while ||

[
Ř(Q̌n, ωn), g(Q̌n)

]T
|2 < tol do

4: Evaluate [Ř(Q̌n, ωn), g(Q̌n)]
5: Evaluate DŘ(Q̌n, ωn) ▷ Full or matrix-vector function
6: j = 0
7: for j < m do
8: Assemble preconditioner P ▷ e.g. Block Jacobi

9: P−1 DŘn, j

[
δQ̌n, j+1, δωn, j+1

]T
= −P−1Řn, j ▷ GMRES

10: (Q̌n, j+1, ωn, j+1) = (Q̌n, j + δQ̌n, j+1, ωn, j + δωn, j+1)
11: j = j + 1
12: end for
13: (Q̌n+1, ωn+1) = (Q̌n + δQ̌n+1, ωn + δωn+1)
14: n = n + 1
15: end while
16: return (Q̌n+1, ωn+1)
17: end function

Fig. 2. Sketch of the computational domain Ω of the uniform flow past a circular cylinder.

Parametric studies and generation of figures are performed using Octave/Matlab with the aid of the generic
rivers of the StabFem project (see a presentation of these functionalities in [7]). According to the philosophy of
his project, a number of example codes generating sample results from the present paper are available online (htt
s://gitlab.com/stabfem/StabFem).

Note that in the numerical implementation, we make an extensive use of mesh adaptation to ensure that spatial
onvergence is reached. The mesh is adapted either to a base flow and a linear eigenmode following the procedure
xplained in [7], or to the whole set of fields constituting the Fourier coefficients of the flow. Such adaptations are
epeated several times during the parametric studies, and each time, the solution is projected onto the new mesh
nd used as starting point to relaunch the Newton iteration.

. Results

.1. Flow past a cylinder

.1.1. Definition of the problem
The first example is the flow past a circular cylinder, a canonical configuration extensively studied in the literature

n the incompressible [7,22] and compressible [8,23] setting. Cross-validations with literature are carried out to
9
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Fig. 3. (a) Evolution of the Strouhal fundamental frequency with Re. Experimental reference was taken from Carte et al. [24] and DNS
data from Inoue et al. [25]. (b) Amplitude of the limit cycle. DNS reference data was reported by Mantic et al. [4].

Fig. 4. Vorticity field at Re = 150 and M = 10−1. (a) Mean component. (b) q̌(1,c) component. (c) q̌(2,c) component.

Fig. 5. Re = 150 and M = 0.2. (a) Pressure distribution around the cylinder. (b) Decay of pressure distribution at θ =
π
2 . Markers report

reference data from [25].

assess the precision of the method. In addition the numerical performance of linear solvers is evaluated in this case
study.

A schematic representation of the computational domain Ω is shown in Fig. 2. Governing equations are
omplemented with the following boundary conditions: uniform velocity U∞, density ρ∞ and temperature T∞ at
oundaries Γin , Γup, Γdown , Γout and no-slip adiabatic wall at the cylinder surface. The computational domain is a
quare of size (300D × 300D) which is immersed into a sponge domain of (1000D × 1000D). The chosen sponge
ize, which is around six wavelengths of the acoustic disturbance at M = 10−2 in each direction, is sufficient to
revent any acoustic reflection from the boundaries of the domain Ω . The auxiliary function g(Q̌) needed to fix the
hase of the cycle was defined as g(Q̌) = Fy(t = 0) ≡

∫
Γw

(
[−pI + τ (u)]t=0 · n

)
· eydℓ, where Γw is the cylinder

all, so that the instant t = 0 corresponds to a zero of the oscillating lift exerted on the cylinder.
10
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Fig. 6. Spectral reconstruction of the solution at Re = 150 and M = 10−1. Gray-scale to distinguish the amplitude of each harmonic, lighter
rays are used for higher harmonics.

Fig. 7. Evolution of the total number of iterations of the inexact factorization with the ASM method of inner blocks with respect to the
tolerance of the ASM procedure. Likewise, total number of GMRES iterations for the resolution of the nonlinear problem with respect to the
ASM tolerance. Parameters Re = 150, M = 0.1, N = 2 with a numerical domain composed of 1.3 · 105 elements and the lower triangular
Gauss Seidel as the outer preconditioner.

A comparison with other results reported in the literature is shown in Fig. 3. As can be seen (Fig. 3a), the
requency of the limit cycle is reliably evaluated even with a truncation to a single harmonic (N = 1). However, it

ails to faithfully estimate its amplitude A =

(∑N
n=1

q̌(n)
2

L2(Ω)

) 1
2 . By contrast, a truncated Fourier basis with order

N = 2 is sufficient to correctly predict the amplitude in the studied interval, namely Re ∈ [Rec, 100]. For higher
Reynolds numbers, e.g. Re = 150, a larger number of harmonics (N > 2) still modifies the spectral reconstruction,
see Fig. 6. Such a figure displays the spectral content of the solution at Re = 150 and M = 10−1. A high-fidelity
reconstruction of the periodic solution can be obtained with N ≥ 4, where the last mode displays a much smaller
amplitude than the others.

Fig. 4 portrays the structure of the Fourier components reconstructing the vortex shedding cycle for Re = 150
and M = 10−1. The structure of the mean flow and first harmonic are in good accordance with [8], but the
second harmonic was not computed by these authors. Moreover, to assess the capability of the methodology to
correctly reconstruct the solution both in the near field (governed by hydrodynamics) and in the far field (governed
by acoustics), Fig. 5 represents the structure of the pressure field for the parameter values M = 2 · 10−1 and
Re = 150, with a truncation N = 2. The comparison with reference data from the Direct Numerical Simulations
(DNS) of Inoue et al. [25] is excellent, both for pressure along the cylinder wall (Fig. 5a), and along the vertical
line defined by x = 0 (Fig. 5b).

.1.2. Performance evaluation
Let us now use this test case to assess the performance of numerical algorithms to efficiently solve linear systems

uch as Eq. (18a). The tolerance to achieve the convergence of the Newton method corresponds to the L2 norm of
the Newton update of Eq. (18a), i.e. ∥δx∥L2 =

√
∥δQ̌∥

2
L2 + |δω|

2, lower than 10−8. Likewise, the relative tolerance
f the GMRES procedure (the ratio of the L2 norm of the residual at the 1st iteration with respect to the i th
teration) for convergence is set to 10−5. The resolution of the linear problems whose associated matrix is an inner
11
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t
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Fig. 8. Same parameters and mesh refinement as Fig. 7. (a) Evolution of relative residual versus cumulative Krylov vectors for the
hree preconditioners. (b) Evolution of the relative residual versus number of GMRES iterations for several restart configurations (outer
reconditioner GSU).

Fig. 9. (a) Dependency of GMRES iteration number with respect to the level of refinement of the computational domain at Re = 150 and
M = 0.1 with N = 2. (b) Number of GMRES iterations as a function of Reynolds number and outer preconditioner with N = 2. Dashed
line denotes the corrected number of GMRES iterations with the Block–Jacobi preconditioning.

block diagonal Dř(i), described in Section 3.3, is carried out with two approaches. If memory is not an issue, each
block in the diagonal (of the Block-Jacobi or Gauss–Seidel preconditioners) is LU factorized. Otherwise an ASM
preconditioner is used to solve the linear problems associated with inner blocks and the tolerance is varied from
10−3 to 10−7 (cf. Fig. 7). The GMRES approach takes 103 iterations with LU factorization of inner blocks; the
number of GMRES iterations (107) reaches a minimum for a relative tolerance of the ASM approach of 10−5

(cf. Fig. 7), which shows weak independence of the GMRES procedure on the method used for the resolution of
the inner diagonal blocks. On each GMRES iteration a Krylov vector is used (no restart). So the total number of
Krylov vectors is equal to the number of GMRES iterations. Fig. 8a reports the evolution of the relative residual
versus the cumulative number of Krylov vectors. In addition, on the same problem we tested the effect of nKry , the
number of Krylov vectors retained in the basis (restarted GMRES). As expected the convergence rate deteriorates,
but convergence is still reached in a reasonable number of iterations.

As reported in Fig. 9b, the number of GMRES iterations per Newton iteration increases quadratically with
Reynolds number. In terms of GMRES iterations, the block diagonal preconditioning is less efficient than the other
two but they follow the same trend as Re increases. Nonetheless, the GS preconditioning performs an additional
number of N (2N + 1) matrix–vector products, which is around 50% more block matrix–vector operations than BJ;
therefore, one should correct the number of GMRES iterations by a factor 1.5, which is displayed in Fig. 9 with
a dashed line. The methodology is also independent, as long as it is sufficient to reconstruct the solution from the
number of harmonics and grid refinement, the latter reported in Fig. 9a. Finally a linear memory gain relative to an
increasing length of the Fourier basis has been reported by Sierra et al. [26] with respect to the direct factorization
of the full Jacobian operator.
12
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Table 1
Wall-clock time required for convergence with eight processors for Re = 150 and
numerical domain composed of 1.4 · 104 elements.

N /Method Fourier–Galerkin Explicit TSM Implicit TSM

M = 3 · 10−1

N = 4 2344 s 2451 s 8345 s
N = 5 2645 s 2992 s 9745 s
N = 6 3049 s 3250 s 11 121 s

M = 10−1

N = 4 2357 s 7745 s 22 355 s
N = 5 2591 s 8454 s 26 341 s
N = 6 3063 s 9721 s 31 545 s

M = 10−2

N = 4 2297 s 73 320 s 92 673 s
N = 5 2618 s 83 450 s 103 673 s
N = 6 3104 s 91 680 s 1 209 452 s

For the sake of comparison with other similar methodologies, authors have considered the Time spectral method
TSM), which solves the following nonlinear problem

Mτ,K DFT Ω̌
τ,K D−1

FT Q + L
(
Q

)
+ F2

(
Q, Q

)
+ F3

(
Q, Q, Q

)
= 0, (27)

where Ω̌ τ,K
k =

[
0 kω

−kω 0

]
, Ω̌ τ,K

0 = 0, DFT denotes the discrete Fourier Transform operator (resp. D−1
FT

corresponds to the inverse Fourier transform operator) and Mτ,K is the mass matrix M evaluated at each sampled
instance. TSM requires the invertibility of forward and inverse discrete Fourier transforms. Therefore, the number of
samples K must be fixed to K = 2N+1. TSM is commonly adapted from an already existing code via a pseudo-time
integration approach (see e.g. [27]): an extra pseudo-time derivative M ∂Q

∂tps
is added as a source term to Eq. (27).

The resulting equations are solved in a pseudo-time direction until the stationary solution of the TSM formulation
is reached. Note that the stationary solution of the TSM formulation is a spectral reconstruction of a periodic
solution of the original system of equations. Such a technique is relative easy to implement as it only requires to
add the TSM time-derivative on an already existing code. However, the pseudo-time marching approach is not able
to directly compute an unstable periodic solution without stabilization procedures, see for instance BoostConv [28].
Furthermore, the efficiency of the approach depends on the CFL parameter of the pseudo-time step ∆tps which is
constrained as

∆tps =
CFL

U∞

h (1 +
1
M ) + ωN

(28)

here h is a measure of the size of the grid spacing and an extra term ωN is added due to the extra pseudo-time
erivative. In acoustic applications, i.e. when 1

M ≫ 1 the CFL condition is roughly simplified to ∆tps ≈
CFL hM

U∞
;

from a practical point of view, O( 1
M ) additional iterations are required with respect to the integration of the classical

Navier–Stokes equations.
We carried out an accurate comparison at Re = 150 for three Mach numbers (M = 3 · 10−1, M = 10−1 and

M = 10−2), with N = 4, 5, 6. The TSM data are computed by using the OpenSource SU2 code [29], where a
finite volume implementation of the TSM method is available. The dual-time integration is realized with either the
classical fourth-order Runge–Kutta method or with an implicit Euler iteration at the largest CFL allowed by stability
constraints.

Regarding the initial condition, the Fourier–Galerkin–Newton–Krylov approach is initialized with a previous
frequency reconstruction at another Mach or Reynolds number (either with the same or less number of harmonics
N ). Whereas, for the TSM, the initial solution consists of a snapshot of a DNS with the same set of parameters
(Re, M). Such a choice was verified a posteriori to be faster than to initialize the TSM computation with a series
of snapshots for another parameter configuration as it is done for FG. Additionally, TSM requires ω and T as an
13
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Table 2
Average memory consumption for the resolution of the linear system Eq. (22) in a Newton iteration of
the Fourier–Galerkin approach with ncores = 8 with a numerical mesh of 7 · 104 elements for Re = 150,
M = 10−1.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Mem.(Gb) 13.5 Gb 24.5 Gb 34.1 Gb 41.1 Gb 53.6 Gb 64.2 Gb

Table 3
Average memory consumption for the resolution of the linear system Eq. (22) in a Newton iteration of the
Fourier–Galerkin approach with N = 4 and a mesh of 1.4 · 105 elements for Re = 150, M = 10−1.

ncores = 8 ncores = 16 ncores = 32 ncores = 64

Mem.(Gb) 75 Gb 93 Gb 129 Gb 171 Gb

input to evaluate the time derivative term. For our test, we have chosen a pair (ω, T ) previously computed by
a DNS. Sensitivity issues to an incorrect selection of the pair (ω, T ) are discussed in Nimmagadda et al. [29].
Both approaches are computed with distinct codes and two different meshes has been used. In order to have a fair
comparison, both numerical domains are composed of approximately 1.4 ·104 elements (triangles for FG and quads
for TSM).

In reference to the numerical performance, let us first remark the similarity in terms of wall-clock time and
memory requirements of the implicit integration of a dual time-step and a GMRES iteration of the Newton–Krylov–
Fourier–Galerkin approach cf. [29,30]. However, a formal correspondence between explicit TSM and FG in terms
of residual evaluations or matrix–vector products does not seem evident. Therefore, a numerical comparison of
both approaches has been carried out in a eight cores Intel i7-9700 architecture. Table 1 reports the wall-clock time
required for convergence (norm of the residual below 10−6). Fourier–Galerkin and explicit TSM record a similar
wall-clock time for M = 3 · 10−1, however TSM suffers a linear increase in the wall-clock time with the 1

M factor.
Therefore, as the Mach number decreases FG rapidly outperforms TSM in wall-clock time due to the CFL constraint
on the pseudo time.

Finally, let us discuss the memory requirements of the Newton–Krylov methodology on two meshes with two
different levels of refinement. M1 is composed of around 1.4 · 105 elements and M2 has around 7 · 104 elements.
Tests on memory requirements have been carried out on a cluster node equipped with 64 Intel(R) Xeon(R) CPU
E5-4610 processors and 256 GB of RAM memory. The first test, carried out on mesh M2, assess the average
memory consumption for the resolution of the linear system associated with each Newton iteration (Eq. (22)).
These were performed with eighth processors for parameters Re = 150 and M = 10−1 and upper Gauss–Seidel as
preconditioning. Table 2 reports a sub-linear memory increasing with a empirical factor N 0.8. Such a factor is mainly

ue to the direct factorization of each block diagonal of the Jacobian Eq. (19). Similar results have been reported
or the implicit TSM cf. [31,32]. The second performance test evaluates the memory scalability with respect to the
umber of processors; the results are reported in Table 3. A 30% increase of memory consumption is observed
ach time the number of processors is doubled. More studies regarding the scalability of the methodology have
een previously carried out [26].

Finally, we highlight that the TSM wall-clock time reported in Table 1 requires the exact knowledge of the
requency ω. As a consequence, the total time required to get a given solution should take into account also the
eed to compute such a frequency. Our approach, on the other hand, directly characterizes the frequency within the
lobal solution.

.2. Whistling jet

The second test case is the flow passing through two circular holes in a plate (known as the hole-tone
onfiguration). Such a flow configuration is encountered in many practical applications, including human whistling,
ind instruments, whistling of a tea kettle [33], or birdcalls (devices used by hunters to imitate bird singing) [34,35].
In this study Fourier–Galerkin formalism is adopted with N = 2, 3 to study the self-sustained hydrodynamic

nstability and the radiation of sound past the unsteady onset. The physical domain and mesh structure are the same
s in [35]. The numerical domain Ω is axisymmetric, as depicted in Fig. 10, with size (800R × 400R ) (z × r ).
h,1 h,1

14
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Fig. 10. Sketch of the hole-tone configuration, frame of reference and definition of geometrical parameters. An example of computational
mesh is also reported in light gray. An actual birdcall is depicted in the upper right corner. For details about the used geometry see [35].

Fig. 11. (a) Evolution of the Strouhal fundamental frequency with Re. (b) Amplitude of the limit cycle.

Fig. 12. Sound directivity at Re = 350 and M = 0.02 at a distance r = 35. Pressure variation ∆p′ is scaled by γ M2.

The problem is complemented with appropriate boundary conditions: adiabatic no-slip walls, inlet mass flux
such as the flow rate across the first hole is equal to unity and sponge layers of the order of three to four acoustic
wavelengths at the far field. The sponge definition is the same as in [8]. The auxiliary function g(Q̌) needed to fix
the phase of the cycle was defined as g(Q̌) =

∫
Γh1

[(u(t = 0) − u0) · n] d S, where Γh1 is the cross section of the
rst hole, so that the instant t = 0 corresponds to a zero of the oscillating volume flow across the hole.

Fig. 11 shows the frequency and amplitude of the cycle as a function of Re, computed with respectively N = 2
nd N = 3 truncations. In the current configuration, a truncated Fourier basis with order two seems sufficient since
he results for N = 2 and N = 3 only differ by a few percents. Note that the flow is steady until the threshold of
he first unsteadiness, which is located at Rec ≈ 332.5. This threshold value was first determined by linear stability
nalysis. The initial guess for the Fourier–Galerkin method with Re > Rec was obtained with a weakly nonlinear
xpansion and continuation was used afterwards while increasing Re.

The current approach provides direct access to the harmonic decomposition of sound directivity, reported in
ig. 12. The interaction between the jet and the two holes acts as a monopole aerodynamic source with different

ntensities upstream and downstream the cavity. The total sound radiation is of higher intensity upstream than
ownstream the obstacle, nonetheless the first harmonic behaves nearly as an isotropic monopole and the third

armonic radiates with higher intensity in the positive z direction.

15
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Fig. 13. Pressure component of acoustic and hydrodynamic perturbations at Re = 350 and M = 0.02 with N = 3. Pressure variation ∆p′

is scaled by γ M2.

The whistling jet test case is a perfect example of what is called in the theory of numerical analysis a stiff problem.
Namely, the ratio between the two velocity scales (acoustic and hydrodynamic) of the flow is large, therefore the
time step is greatly constrained with respect to an application where the fast velocity scale is not of interest. A
reconstruction of a time series of the periodic flow separating both hydrodynamic and acoustic scales is displayed
in Fig. 13. Time integration with common numerical schemes, e.g. Runge–Kutta method, of a single point (fixed
Re and M) of Fig. 11 requires the integration of several flow time scales, T =

1
St . Moreover, the maximum time

tep of an explicit time integrator is governed by the fast time scale which is of the order ∆t ≈ O(M). This implies
hat the simulation of the compressible Navier–Stokes equations at low-Mach-number would take approximately
n O(M−1) the amount of time necessary for a incompressible simulation. The analysis of acoustic radiation at
16
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the low-Mach-number limit usually becomes prohibitively expensive and it requires the use of low-Mach-number
limit approximations, where different scales are solved sequentially with a one-way feedback, see Nana et al. [36].
Fourier–Galerkin approach applied to compressible flows is intended to open new possibilities in the study of flows
of acoustic and aeroacoustic interest at low-Mach-number since the CFL constraint does not hold. Additionally, the
approach could be adapted to track quasiperiodic solutions by the consideration of two incommensurate frequencies
and their interactions.

6. Conclusion

An efficient methodology for the computation of periodic flow solutions has been presented. The approach is
ased on the orthogonal projection of the sought solution on a truncated Fourier basis. The parametrized limit
ycle is then directly accessible by solving a fixed point problem without the requirement of solving for transients.
rylov–Newton method has been selected for the resolution of the nonlinear residual problem Eq. (15). That sort
f approach necessitates efficient preconditioning techniques, in the current study two layers of preconditioners are
roposed and their performance has been tested in the flow past the circular cylinder in Section 5.1.1. Assembling
f the Jacobian and residual operators, as well as the solution of the nonlinear problem is effectuated in a parallel
ramework. A comparison with similar spectral techniques has been demonstrated in Section 5.1.2, where it is shown
he absence of a CFL-like condition for the Fourier–Galerkin approach. The latter property is significant for the
econstruction of solutions of stiff problems. Finally, the hole-tone configuration serves as a test case to demonstrate
he ability of the technique to accurately reconstruct the two flow scales.

To conclude, we stress again that in addition to being efficient for computation of a cycle for a single set of
arameters, our implementation is designed to perform parametric studies using a continuation method. Namely,

once we have computed a cycle, taking it as an initial condition to relaunch the Newton iteration for nearby values
of the parameter generally converges in only a few iterations. This procedure still needs an initial guess. In the
present paper, the latter is constructed for parameters just above the instability onset using a weakly nonlinear
expansion. Another possibility is to initialize the approach with a previous solution of a time-stepping simulation.
This procedure has not been demonstrated here but might be simpler as any available software performing DNS
may be used. Another advantage of the methodology is the ability to track unstable periodic cycles. Such solutions
are not accessible with usual time-stepping DNS, but they are important when characterizing the dynamics from
a dynamical system perspective, as their knowledge allows to understand more complex dynamics involving, for
instance quasi-periodic orbits or chaotic attractors [37,38].
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Appendix. Fourier Galerkin equations

Let us detail the derivation of Fourier–Galerkin equations Eq. (15). For the sake of self-consistency let us first
summarize the Fourier–Galerkin equations:

ř(0)
= LNS |q̌(0)

(
q̌(0)

)
+ F̌(0)

2

(
Q̌

)
+ F̌(0)

3

(
Q̌

)
(A.1a)

ř(k,c)
= kωM|q0 q̌(k,s) + LNS |q̌(0)

(
q̌(k,c)

)
+ F̌(k,c)

2

(
Q̌

)
+ F̌(k,c)

3

(
Q̌

)
(A.1b)

ř(k,s)
= −kωM|q0 q̌(k,c) + LNS |q̌(0)

(
q̌(k,s)

)
+ F̌(k,s)

2

(
Q̌

)
+ F̌(k,s)

3

(
Q̌

)
(A.1c)

where nonlinear operators in the Fourier basis F̌(i)
(
Q̌

)
have been explicitly written using their quadratic and
cubic contributions. The first step in an explicit derivation of Eq. (A.1) consists on the injection of the Fourier

17
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Table A.4
Summary of trigonometric identities. c and s denote cosinus and sinus functions.
Each term of the right (sum) is multiplied by a factor of 1

4 .

Product Sum

m n ℓ n + m + ℓ n + m − ℓ n + ℓ − m m + ℓ − n

c c c c c c c
c c s s −s s s
c s c s s s −s
c s s −c c −c c
s c c s s −s s
s c s −c c c −c
s s c −c −c c c
s s s −s s s s

representation of the sought solution Eq. (14) into the governing equations:∑N
n=1 LNS |q̌(0)

(
q̌(0)

)
+

[
−kωM|q0 q̌(k,c) + LNS |q̌(0)

(
q̌(n,s)

)]
sin(nωt)

+

[
kωM|q0 q̌(k,s) + LNS |q̌(0)

(
q̌(n,c)

)]
cos(nωt)

+
∑N

n=1
∑N

m=1

[
F2

(
q̌(n,s), q̌(m,s)

)
sin(nωt)sin(mωt)

+ F2
(
q̌(n,s), q̌(m,c)

)
sin(nωt)cos(mωt)

+ F2
(
q̌(n,c), q̌(m,s)

)
cos(nωt)sin(mωt)

+ F2
(
q̌(n,c), q̌(m,c)

)
cos(nωt)cos(mωt)

]
+

∑N
n=1

∑N
m=1 nω

[
−M

⏐⏐
q̌(m,s)

q̌(n,c)sin(nωt)sin(mωt)
− M

⏐⏐
q̌(m,c)

q̌(n,c)sin(nωt)cos(mωt)

+ M
⏐⏐
q̌(m,s)

q̌(n,s)cos(nωt)sin(mωt) + M
⏐⏐
q̌(m,c)

q̌(n,s)cos(nωt)cos(mωt)
]

+
∑N

ℓ=1
∑N

n=1
∑N

m=1

[
F3

(
q̌(ℓ,s), q̌(n,s), q̌(m,s)

)
sin(ℓωt)sin(nωt)sin(mωt)

+ F3
(
q̌(ℓ,c), q̌(n,s), q̌(m,s)

)
cos(ℓωt)sin(nωt)sin(mωt)

+ F3
(
q̌(ℓ,s), q̌(n,s), q̌(m,c)

)
sin(ℓωt)sin(nωt)cos(mωt)

+ F3
(
q̌(ℓ,c), q̌(n,s), q̌(m,c)

)
cos(ℓωt)sin(nωt)cos(mωt)

+ F3
(
q̌(ℓ,s), q̌(n,c), q̌(m,s)

)
sin(ℓωt)cos(nωt)sin(mωt)

+ F3
(
q̌(ℓ,c), q̌(n,c), q̌(m,s)

)
cos(ℓωt)cos(nωt)sin(mωt)

+ F3
(
q̌(ℓ,s), q̌(n,c), q̌(m,c)

)
sin(ℓωt)cos(nωt)cos(mωt)

+ F3
(
q̌(ℓ,c), q̌(n,c), q̌(m,c)

)
cos(ℓωt)cos(nωt)cos(mωt)

]
= 0

(A.2)

Prior to the weighted residual step, it is convenient to work out trigonometric products of A.2 to cos(kωt) (resp.
sin(kωt)) where 0 ≤ k ≤ N .

Table A.4 summarizes the set of identities to rearrange products of trigonometric terms into sum of terms of
the Fourier basis. In the following, instead of working with non-symmetric operators as F3, let us use symmetric
operators as F(sym)

3 . Symmetric operators simplify the derivation of Fourier–Galerkin nonlinear terms F̌(i,c) (resp.
F̌(i,s)). Such a choice allows to uniquely consider a set of terms with argument (n + m + ℓ)ωt and (n + m − ℓ)ωt
because the symmetric operator intrinsically considers the other set of terms whose arguments are (n − m + ℓ)ωt
and (−n + m + ℓ)ωt . Nonetheless, special care must be paid to consider unique terms, which is effectuated by the
coefficient multiplying each term. In addition, the permutation of (m, n) by (n, m) does not change terms whose
argument is (n+m−ℓ)ωt , which implies that only six terms of this kind are possible for each (m, n) m+n ≤ N +k,
listed in Table A.5. Analogously, for terms whose arguments are of the kind (n + m + ℓ)ωt only four terms are
possible, reported in Table A.6 with their corresponding coefficients.
18
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d

Table A.5
Coefficients of terms whose argument is of the kind (n + m − ℓ)ωt . Element pairs
(m, n) = (n, m) are considered the same.

Index Coefficient
(m, n) ℓ n + m − ℓ = k

(c, c) c 1
8 c

(c, s) s 1
4 c

(s, s) c −
1
8 c

(c, s) c 1
4 s

(c, c) s −
1
8 s

(s, s) s 1
8 s

Table A.6
Coefficients of terms whose argument is of the kind (n + m + ℓ)ωt . Same legend as
in Table A.5.

Index Coefficient
(m, n, ℓ) n + m + ℓ = k

(c, c, c) 1
24 c

(c, s, s) −
1
8 c

(c, c, s) 1
8 s

(s, s, s) −
1

24 s

A.1. Fourier–Galerkin nonlinear terms of third degree

Once the nonlinear terms of the third degree are written as coefficients of elements of the Fourier basis, the
erivation of the Fourier–Galerkin expression of F̌(i)

3

(
Q̌

)
is immediate:

F̌(0)
3

(
Q̌

)
=

1
8

N−1∑
m=1,n=1
m+n≤N

[
2F(sym)

3

(
q̌(n,s), q̌(m,c), q̌(n+m,s)

)
− F(sym)

3

(
q̌(n,s), q̌(m,s), q̌(n+m,c)

)
+ F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(n+m,c)

)]
(A.3a)

F̌(k,c)
3

(
Q̌

)
=

1
8

N∑
m=1,n=1

m+n≤N+k

[
2F(sym)

3

(
q̌(n,s), q̌(m,c), q̌(n+m−k,s)

)
− F(sym)

3

(
q̌(n,s), q̌(m,s), q̌(n+m−k,c)

)
+ F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(n+m−k,c)

)]
+

1
24

k−2∑
m=1,n=1
m+n≤k−1

[
F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(k−n−m,c)

)
− 3F(sym)

3

(
q̌(n,c), q̌(m,s), q̌(k−n−m,s)

)]
(A.3b)

F̌(k,s)
3

(
Q̌

)
=

1
8

N∑
m=1,n=1

m+n≤N+k

[
2F(sym)

3

(
q̌(n,c), q̌(m,s), q̌(n+m−k,c)

)
(sym)(

ˇ ˇ ˇ
)

− F3 q(n,c), q(m,c), q(n+m−k,s)
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+ F(sym)
3

(
q̌(n,s), q̌(m,s), q̌(n+m−k,s)

)]
+

1
24

k−2∑
m=1,n=1
m+n≤k−1

[
−F(sym)

3

(
q̌(n,s), q̌(m,s), q̌(k−n−m,s)

)
+ 3F(sym)

3

(
q̌(n,c), q̌(m,c), q̌(k−n−m,s)

)]
(A.3c)

A.2. Fourier-Galerkin nonlinear terms of second degree

Analogously, the quadratic operator F̌(i)
2

(
Q̌

)
is written as:

F̌(0)
2

(
Q̌

)
=

1
4

N∑
n=1

[
2FM

2,(nω,nω)

(
q̌(n,s), q̌(n,c)

)
+ F(dya)

2

(
q̌(n,c), q̌(n,c)

)
+ F(dya)

2

(
q̌(n,s), q̌(n,s)

)]
(A.4a)

F̌(k,c)
2

(
Q̌

)
=

1
2

N∑
n=k+1

[
FM

2,((k−n)ω,nω)

(
q̌(n,s), q̌(n−k,c)

)
+ FM

2,(−nω,(n−k)ω)

(
q̌(n−k,s), q̌(n,c)

)
+ F(dya)

2

(
q̌(n,c), q̌(n−k,c)

)
+ F(dya)

2

(
q̌(n,s), q̌(n−k,s)

)]
+

1
4

k−1∑
n=1

[
FM

2,(kω,kω)

(
q̌(n,s), q̌(k−n,c)

)
+ F(dya)

2

(
q̌(n,c), q̌(k−n,c)

)
− F(dya)

2

(
q̌(n,s), q̌(k−n,s)

)]
(A.4b)

F̌(k,s)
2

(
Q̌

)
=

1
2

N∑
n=k+1

[
FM

2,((n−k)ω,−nω)

(
q̌(n,c), q̌(n−k,c)

)
+ FM

2,(−nω,(n−k)ω)

(
q̌(n−k,s), q̌(n,s)

)
+ F(dya)

2

(
q̌(n,s), q̌(n−k,c)

)
− F(dya)

2

(
q̌(n,c), q̌(n−k,s)

)]
+

1
4

k−1∑
n=1

[
FM

2,((k−n)ω,nω)

(
q̌(n,s), q̌(k−n,s)

)
+ FM

2,(−nω,(n−k)ω)

(
q̌(k−n,c), q̌(n,c)

)
+ 2F(dya)

2

(
q̌(k−n,c), q̌(n,s)

)]
(A.4c)

Please also note the definition of the new dyadic operator FM
2,(a,b):

FM
2,(a,b)

(
q̂i , q̂ j

)
≡ aM

⏐⏐
q̂i

q̂ j + bM
⏐⏐
q̂ j

q̂i (A.5)

where M
⏐⏐ = diag(1, ρ̂ j I, ρ̂ j , 0).
q̂ j
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A.3. Jacobian operator

Let us consider the Jacobian operator of the Fourier–Galerkin residual Eq. (A.1):

Dř(0)δQ̌ = LNS |q̌(0)

(
δq̌(0)

)
+

[
DF̌(0)

2|Q̌
+ DF̌(0)

3|Q̌

]
δQ̌ (A.6a)

Dř(k,c)δQ̌ = kωM
⏐⏐
δq̌(0)

q̌(k,s) + kωM
⏐⏐
q̌(0)

δq̌(k,s) + LNS |q̌(0)

(
δq̌(k,c)

)
+

[
DF̌(k,c)

2|Q̌
+ DF̌(k,c)

3|Q̌

]
δQ̌ (A.6b)

Dř(k,s)δQ̌ = −kωM
⏐⏐
δq̌(0)

q̌(k,c) − kωM
⏐⏐
q̌(0)

δq̌(k,c) + LNS |q̌(0)

(
δq̌(k,s)

)
+

[
DF̌(k,s)

2|Q̌
+ DF̌(k,s)

3|Q̌

]
δQ̌ (A.6c)

where LNS (−kω)
|q̌(0)

(
q̌(k,c)

)
and M

⏐⏐
δq̌(0)

are linear operators. So, it is left to compute the derivative of nonlinear terms

with respect to Q̌, noted DF̌(k,s)
2|Q̌

and DF̌(k,s)
3|Q̌

, along with the derivative with respect to ω:

Dωř(0)δω = DωF̌(0)
2|Q̌

δω (A.7a)

Dωř(k,c)δω = δω
(
kM

⏐⏐
q̌(0)

q̌(k,s)
)
+ DωF̌(k,c)

2|Q̌
δω (A.7b)

Dωř(k,s)δω = δω
(
−kM

⏐⏐
q̌(0)

q̌(k,c)
)
+ DωF̌(k,s)

2|Q̌
δω (A.7c)

Terms DωF̌(0)
2|Q̌

, DωF̌(k,s)
2|Q̌

and DωF̌(k,c)
2|Q̌

will be detailed in the following section.

A.4. Jacobian operator of Fourier–Galerkin nonlinear terms of third degree

The Jacobian operator of Eq. (A.3) is a linear operator composed of 2 × 2 blocks for each harmonic component,
except the mean flow component. Jacobian operators of high degree of nonlinearity lead to dense representations
of derivative operators in the frequency domain, that is, the interactions between harmonics greatly depend on the
degree of nonlinearity. The blocks of the Jacobian corresponding to the mean flow component are expressed as:

DF̌(0; j,s)
3 δq̌( j,s) =

1
4

min (N− j,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌( j+m,s)

)
+

1
4

min ( j−1,1)∑
m=1

F(sym)
3

(
q̌( j−m,s), q̌(m,c), δq̌( j,s)

)
−

1
4

min (N− j,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌( j+m,c)

)
(A.8a)

DF̌(0; j,c)
3 δq̌( j,c) =

1
4

min (N− j,1)∑
m=1

F(sym)
3

(
q̌(m,s), δq̌( j,c), q̌( j+m,s)

)
−

1
8

min ( j−1,1)∑
m=1

F(sym)
3

(
q̌( j−m,s), q̌(m,s), δq̌( j,c)

)
+

1
4

min (N− j,1)∑
m=1

F(sym)
3

(
q̌(m,c), δq̌( j,c), q̌( j+m,c)

)
+

1
8

min ( j−1,1)∑
m=1

F(sym)
3

(
q̌( j−m,c), q̌(m,c), δq̌( j,c)

)
(A.8b)
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Similarly, the cosinus lines of the Jacobian are expressed as:

DF̌(k,c; j,s)
3 δq̌( j,s) =

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌( j+m−k,s)

)

+
1
4

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌( j+k−m,s), q̌(m,c), δq̌( j,s)

)
−

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌( j+m−k,c)

)

−
1
4

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌(k− j−m,s)

)
(A.9a)

DF̌(k,c; j,c)
3 δq̌( j,c) =

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,s), δq̌( j,c), q̌( j+m−k,s)

)

−
1
8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌(m,s), q̌( j+k−m,s), δq̌( j,c)

)
+

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,c), δq̌( j,c), q̌( j+m−k,c)

)

+
1
8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌(m,c), q̌( j+k−m,c), δq̌( j,c)

)
+

1
8

min (k− j−1,1)∑
m=1

F(sym)
3

(
q̌(m,c), q̌(k−m− j,c), δq̌( j,c)

)
−

1
8

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,c), q̌(m,s), q̌(k−m− j,s)

)
(A.9b)

and finally the derivative of sinus components:

DF̌(k,s; j,s)
3 δq̌( j,s) =

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,c), q̌( j+m−k,c)

)
−

1
8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌( j+k−m,c), q̌(m,c), δq̌( j,s)

)
+

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌( j+m−k,s)

)
+

1
8

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌( j+k−m,s), q̌(m,s), δq̌( j,s)

)
−

1
8

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,s), q̌(m,s), q̌(k− j−m,s)

)
+

1
8

min (k− j−1,1)∑
F(sym)

3

(
q̌(k− j−m,c), q̌(m,c), δq̌( j,s)

)
(A.10a)
m=1
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DF̌(k,s; j,c)
3 δq̌( j,c) =

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,s), δq̌( j,s), q̌( j+m−k,s)

)
+

1
4

min ( j+k−1,N )∑
m=1

F(sym)
3

(
q̌(m,c), q̌( j+k−m,s), δq̌( j,c)

)
−

1
4

min (N+k− j,N )∑
m=max (k− j+1,1)

F(sym)
3

(
q̌(m,c), δq̌( j,c), q̌( j+m−k,s)

)
+

1
4

min (k− j−1,1)∑
m=1

F(sym)
3

(
δq̌( j,c), q̌(m,c), q̌(k−m− j,s)

)
(A.10b)

A.5. Jacobian operator of Fourier–Galerkin nonlinear terms of second degree

Let us now detail the expressions of quadratic nonlinear terms. Please note that some of the terms do not appear
because their index is higher than N or lower than one. In the following, those terms whose index is equal to k − j
may uniquely be present if j ≤ k + 1. Similarly those terms whose index is k + j should respect k + j ≤ N . Terms
which do not satisfy the previous relations are implicitly suppressed.

DF̌(0)δq̌( j,c) =
1
2

FM
2,(− jω, jω)

(
q̌( j,s), δq̌( j,c)

)
+

1
2

F(dya)
2

(
q̌( j,c), δq̌( j,c)

)
(A.11a)

DF̌(0)δq̌( j,s) =
1
2

FM
2,(− jω, jω)

(
δq̌( j,s), q̌( j,c)

)
+

1
2

F(dya)
2

(
q̌(n,s), δq̌(n,s)

)
(A.11b)

DF̌(k,c; j,s)
2 δq̌( j,s) =

1
2

[
FM

2,((k− j)ω, jω)

(
δq̌( j,s), q̌( j−k,c)

)
+ FM

2,(−( j+k)ω, jω)

(
δq̌( j,s), q̌( j+k,c)

)
+ F(dya)

2

(
δq̌( j,s), q̌( j−k,s)

)
+ F(dya)

2

(
q̌( j+k,s), δq̌( j,s)

) ]
+

1
4

[
FM

2,(kω,kω)

(
δq̌( j,s), q̌(k− j,c)

)
− 2F(dya)

2

(
δq̌( j,s), q̌(k− j,s)

) ]
(A.11c)

DF̌(k,c; j,c)
2 δq̌( j,c) =

1
2

[
FM

2,(( j+k)ω,− jω)

(
δq̌( j,c), q̌( j+k,s)

)
+ FM

2,(( j−k)ω,− jω)

(
δq̌( j,c), q̌( j−k,s)

)
+ F(dya)

2

(
q̌( j+k,c), δq̌( j,c)

)
+ F(dya)

2

(
δq̌( j,c), q̌( j−k,c)

) ]
+

1
4

[
FM

2,(kω,kω)

(
q̌( j,s), δq̌(k− j,c)

)
+ 2F(dya)

2

(
δq̌( j,c), q̌(k− j,c)

) ]
(A.11d)

DF̌(k,s; j,c)
2 δq̌( j,c) =

1
2

[
FM

2,( jω,−( j+k)ω)

(
q̌( j+k,c), δq̌( j,c)

)
+ FM

2,(( j−k)ω,− jω)

(
δq̌( j,c), q̌( j−k,c)

)
+ F(dya)

2

(
q̌( j+k,s), δq̌( j,c)

)
− F(dya)

2

(
δq̌( j,c), q̌( j−k,s)

)
+ FM

2,(− jω,( j−k)ω)

(
q̌( j−k,c), δq̌( j,c)

)
+ F(dya)

2

(
δq̌( j,c), q̌( j−k,s)

) ]
(A.11e)

DF̌(k,s; j,s)
δq̌( j,s) =

1 [
FM (

δq̌( j,s), q̌( j+k,s)
)

2 2 2,(−( j+k)ω, jω)
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+ FM
2,(− jω,( j−k)ω)

(
q̌( j−k,s), δq̌( j,s)

)
+ F(dya)

2

(
δq̌( j,s), q̌( j−k,c)

)
− F(dya)

2

(
q̌( j+k,c), δq̌( j,s)

)
+ FM
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(
δq̌( j,s), q̌(k− j,s)

)
+ F(dya)

2

(
q̌(k− j,c), δq̌( j,s)

) ]
(A.11f)

Prior to the introduction of the derivative of the quadratic nonlinear term with respect to ω, let us define the
derivative with respect to ω of the generic operator FM

2,( jω,kω)

(
q̌(a), q̌(b)

)
:

DωFM
2,( jω,kω)

(
q̌(a), q̌(b)

)
=

(
jM

⏐⏐
q̌(a)

q̌(b) + kM
⏐⏐
q̌(b)

q̌(a)
)

(A.12)

Then the definition of DωF̌(0)
2|Q̌

, DωF̌(k,s)
2|Q̌

and DωF̌(k,c)
2|Q̌

is as follows,

DωF̌(0)
2|Q̌

δω =
1
2
δω

N∑
j=1

DωFM
2,(− j, j)

(
q̌( j,s), q̌( j,c)

)
(A.13a)

DωF̌(k,c)
2|Q̌

δω = δω
[ 1

4

k−1∑
j=1

DωFM
2,(k,k)

(
q̌( j,c), q̌(k− j,s)

)
+

1
2

N∑
j=i+1

DωFM
2,(k− j,− j)

(
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)
+

1
2
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DωFM
2,(k− j, j)

(
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) ]
(A.13b)

DωF̌(k,s)
2|Q̌

δω = δω
[ 1

4
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j=1
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2,(k− j, j)

(
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)
+

1
4
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2,(k− j,− j)

(
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) ]
(A.13c)

+
1
2

N∑
j=i+1

DωFM
2,( j−k,− j)

(
q̌( j,s), q̌(k− j,s)

)
+

1
2

N∑
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DωFM
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(
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)
(A.13d)
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