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Abstract

We focus our attention on the stability computations of compressible flows in subsonic regime.
The use of artificial boundary conditions in compressible simulations is mandatory since truncated
computational domains induce nonphysical wave reflections. Moreover, it has been observed
that, even for incompressible flows, artificial boundary conditions are required to reduce the
computational domain used for the solution of the linearized Navier-Stokes equations [1]. We
found that most of the investigations reported in literature adopted the sponge regions as boundary
conditions [2]. However, a valid alternative is offered by the Perfectly matched layer (PML).
Unfortunately both of these methods increase the computational burden of the simulation because
they require, respectively, large domains and the introduction of additional equations and unknowns
[3].
Here, we propose to adopt a complex mapping to dump the wave reflections. This choice preserves
the dimension of the original system. This property is very important in parametric studies of
eigenproblems in two and three spatial dimensions. We show the application of simple complex
mappings in two different flow configurations. The first example is the forced and free acoustic
flow through a duct where a comparison against PML and analytical boundary conditions is
carried out. The computed impedance with this novel methodology matches those with PML
and analytical conditions in a given range. Complex mapping prove to be more robust than
Sommerfeld boundary condition for the free problem. Secondly, we consider the birdcall configuration.
In this configuration the use of complex mapping is strongly suggested, with respect to sponge
techniques, because the low Mach numbers involved in the computations imply a large sponge
region. Furthermore, the use of complex mapping allows to identify discrete modes at the threshold
of a bifurcation thanks to the tilt of the continuous branch of the spectrum [4].

Complex mapping technique Complex mapping is based on analytical continuation of a given
PDE or system of PDEs. In our study, the Navier Stokes equations are analytically continuated into
complex spatial coordinates where fields are exponentially decaying. CM is based on an analytical
continuation of the solution of a PDE to complex coordinates, where oscillating or diverging waves
become exponentially decaying waves outside the region of interest. In such a way, we could
propose a general complex mapping technique that transforms a numerical Euclidean space RN

whose coordinates are Xi, to physical coordinates xi, for i = 1, 2, ..., N

Gx : R → C such that X 7→ Gx(X) = h(X)
[
1 + iγcg(X)

]
(1)

where g(X) =
∫ X
X0
τ(x′)dx′ is a smooth function that controls the transition from the real line

to a specific direction z = (1, iγc) of the complex plane. The parameter γc dictates the complex
direction of the coordinate xi, that is it controls the absorption of a given wave. For a given spatial
mode to be spatially evanescent it needs to satisfy 0 < arg(k) + arctan(γc) < π
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Figure 1: A subfigure
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Figure 2: A subfigure

Figure 3: A figure with two subfigures

Numerical results - Birdcall We choose to demonstrate our method on the problem of the flow
passing through a circular hole in a plate. First of all we report in Table 1 the computational times
obtained by using the sponge and the complex mapping method. We found a dramatic reduction
of the run-time using the same spatial resolution in the interesting flow region (i.e. near the hole).
The reported times take into account the computation of the baseflow and the leading eigenvalue
at Re = 400 and M = 0.05.

Mesh Methodology ω Time (s)

M1 Sponge 4.7574 + 0.0792i 83944 s
M2 Complex Mapping 4.6922 + 0.0666i 1655 s
M3 Complex Mapping 4.7151 + 0.0945i 1421 s
M4 Complex Mapping 4.7051 + 0.0747i 669 s

Table 1: Comparison of the time required to compute the base flow and the leading eigenvalue.

An example of base flow and pressure global mode fields are depicted in fig. 4.

Figure 4: Some features of stability analysis of the birdcall at Re = 1600 and M = 0.05. At a)
the base flow is shown, colors represent streamwise velocity Ux, whereas streamlines are shown in
black. b) On the top real part of pressure mode 4 is represented pr and on the bottom the imaginary
part of the vorticity ωi mode 4. c) and d) show the acoustic pressure fluctuations of mode 2 and 4.
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