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Flow configuration



Flow configuration

Figure 1: Sketch of the open/open configuration. Whistle Category II
(Chanaud 1970)

Re =
ρ0DhUM

µ
≡ 2ṁ0

πRhµ
; M =

UM
c0

with c0 =
√
γRgT0;

β =
Lh
2Rh

=
Lh
Dh

(1)
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Flow configuration (II)

Figure 2: Sketch of the closed/open configuration. Whistle Category III
(Chanaud 1970)

Vin =
LinπR2in
R3h

. (2)
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Governing equations

Let consider a compressible fluid motion of a perfect gas described
in primitive variables by q = [ρ,u, T,p]T, where the velocity vector
field is u = (u, v,w), pressure p, temperature T and fluid density ρ.
Dimensional primitive variables have been made dimensionless as
follows:

x = x̃
Dh

, t = t̃UM
Dh

, ρ =
ρ̃

ρ0
, u =

ũ
UM

, T = T̃
T0

, p =
p̃− p0
ρ0U2M

(3)

M
(∂q
∂t

)
= NS

(
q
)
= L

(
q
)
+ N(q) + C = 0 (4)
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Governing equations (II)

M
(∂q
∂t

)
= NS

(
q
)
= L

(
q
)
+ N(q) + C = 0 (5)

where C = [0,0, 0, 1]T, the mass matrix, the linear operator are as
follows:

M =


1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

 , L =


0 0 0 0
0 −∇ · τ(·) 0 ∇
0 0 − γ

PrRe∆ 0
0 0 0 γM2

 (6)

and the nonlinear operator is written as:

N(q) =


u · ∇ρ+ ρ∇ · u

ρu · ∇u
(γ − 1)

[
ρT∇ · u− γM2τ(u) : D(u)

]
+ ρu · ∇T

−ρT

 , (7)
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Flow stability (I) – Steady-state

NS
(
q0

)
= L

(
q0

)
+ N(q0) + C = 0 (8)

with boundary conditions∫
Γin

ρ0u0 · ndS = ṁ0 (9a)

p0 = Pin on Γin, (9b)

p0 = Pout on Γout. (9c)
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Flow stability (II) – Gen. eigenvalue problem

The evolution of the perturbation q̂, where

q(t) = q0 + ε
(
q̂e−iωt + c.c.

)
(10)

is governed by the linearised compressible Navier–Stokes equations

− iωMq̂ = LNS0
(
q̂
)
=

[
L+ DN

∣∣
q0

]
q̂, (11)

• With the purpose of modelling a large container upstream of the
hole the Complex Mapping technique [5]; it is set both upstream
and downstream, to avoid any nonphysical reflection into the
domain of interest. At the far-field constant density equal to ρ0
is set and stress-free boundary condition.

• For the purpose of modelling a closed cavity that acts as an
acoustic resonator, no-slip boundary conditions are set at the
inlet with constant density ρ0; stress-free condition and
constant density ρ0 is set at the outlet. In this case, we used a
complex mapping in the region downstream of the hole. 7



Flow stability (III) – Impedance criterion

(a) (b)

Figure 3: Sketch of the electric analogy of the model employed for
open/open (a) and for the cavity/open (b) configurations.

Hypothesis: Mach number is small and coustic wavelengths are
much larger than the dimensions of the hole (acoustic compactness
hypotheses).

pin(t) = Pin + p′ine−iω̃t, pout(t) = Pout + p′oute−iω̃t,

q(t) = Q0 + q′e−iω̃t,. (12)
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Impedance modelling (I)

• Inner region : hole impedance

Zh(ω) =
[
R2h

ρ0UM

] p′in − p′out
q′ (13)

• Downstream (resp. upstream in open configuration) region :
radiation impedance

Zrad =
[
R2h

ρ0UM

]
p′out
q′ =

Mω2
2π (14)

• Upstream region : case of a closed domain

Zcav =
[
R2h

ρ0UM

] p′in
q′ =

i
ωM2Vin

=
i

ωχ
, χ = M2Vin (15)
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Impedance modelling (II)

Regrouping all regions, we are able to obtain a single constitutive
equation allowing to determine the eigenfrequencies of the problem,
featuring a total impedance of the full system, noted either Za or Zb
for the two investigated configurations:

(a): For the open/open configuration, Zh = −2Zrad, or equivalently :

Za(ω) = Zh(ω) +
Mω2
π

= 0 (16)

(b): for the cavity/open configuration, Zh = −Zcav − Zrad, or
equivalently :

Zb(ω) = Zh(ω) +
Mω2
2π +

i
M2Vinω

= 0 (17)
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Impedance modelling (III)

Following an idea previously used in [4], we will assume that the
impedance of the full system is mostly reactive. We first elaborate
this idea for the cavity/open configuration. The hypotheses are as
follows:

1. ω = ω0 + ω1, ω0 ∈ R, ω1 ∈ C, , |ω1| ≪ |ω0|,
2. |Re(Zh)| ≪ |Im(Zh)|
3. Mω2

2π ≪ |Im(Zh)|

The conditions for instability are Za = 0 and Zb = 0.

Look for it performing a Taylor development in terms of the assumed
small quantities leads to

Zb(ω) = i
[
Zh,I(ω0) +

1
M2Vinω0

]
+
[
Zh,R(ω0) + Mω2

0
2π +

((
∂Zh
∂ω

)
ω=ω0

− i
M2Vinω2

0

)
ω1

]
+h.o.t.

(18)
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Impedance modelling (IV)

• Closed domain (Zb)
1. The 0th-order terms lead to the condition

− ω0Zh,I(ω0) =
1

M2Vin
=

1
χ

(19)

2. Secondly, the first-order term leads to

ω1 =
−
[
Zh,R(ω0) + Mω20

2π

]
(

∂Z
∂ω

)
ω=ω0

(20)

• Open domain (Za)
1. The 0th-order terms lead to the condition

− ω0Zh,I(ω0) = 0 (21)

2. Secondly, the first-order term leads to

ω1 =
−Zh,R(ω0)( ∂Zh
∂ω

)
ω=ω0

=
−
[
Zh,R(ω0) + Mω20

π

]
( ∂Zh

∂ω

)
ω=ω0

(22)
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Impedance modelling (V)

• A direct method
1. Given the parameters M and Vin determine ω0 as an implicit
function of χ (as sketched in figure 5a).

2. Then ω1 is an explicit function of ω0 and M.
3. ω = ω0 + ω1, unstable if Im(ω1) > 0

(a) (b)

Figure 4: Zeroth-order (a) and first order (b)
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Impedance modelling (VI)

• Inverse method.
1. M is given, determine Im(ω1) as a function of ω0 and deduce the
ranges of ω0 where this function is positive (as indicated in blue
on figure 5b).

2. Deduce the corresponding ranges for 1/(M2Vin) from 0th order
correction.

3. The approach will thus indicate the ranges of Vin where, for the
given M, the jet is unstable.

(a) (b)

Figure 5: Zeroth-order (a) and first order (b)
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Results



Validation of the approach in the closed domain

(a) (b)

Figure 6: Lines were obtained from the asymptotically matched model and
points with compressible LNSE. Solid lines denote unstable regions, dashed
lines are used for stable zones. Re = 1600.
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Stability criterion for the closed domain (Re− χ)

(a) β = 0.3 (b) β = 0.6

(c) β = 1 (d) β = 2

Figure 7: Regions of conditional stability in the (χ,Re) plane. 16



Stability criterion for the closed domain (M− Vin)
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Figure 8: Regions of conditional stability in the (Vin,M) plane for β = 1. 17



A word about the open-configuration

0.5 1 1.5 2

-

1400

1600

1800

2000
R

e
M = 10!2

M = 5 " 10!2

M = 10!1

(a) (b)

(c) (d)

Figure 9: H2 (solid lines) and H3 (dashed lines).

18



Conclusion



Summary

• Study of the stability of the acoustic flow field past a thick hole.
• Modelling of the configuration in terms of a scalar transfer
function: impedance.

• Simplified instability criterion in terms of the impedance. Faster
parametric analysis than linearised compressible Navier–Stokes.

• Good matching as long as the sources are acoustically compact.

Codes for compressible steady-state, compressible linearised and
incompressible forced problems are available in

https://gitlab.com/stabfem/StabFem

For more details, [1, 2, 3]
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Questions?
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