The O(2) equivariant Steady–Hopf interaction

Dynamics of the wake of axisymmetric objects (WFA) and in mixed convection (WFA-MC).

Javier Sierra-Ausin^{1,2}, D. Fabre¹, E. Knobloch³

¹ UPS-IMFT, Institut de Mécanique des fluides de Toulouse, CNRS, Toulouse 31400, France
 ² UNISA-DIIN, Universitá degli Studi di Salerno, Fisciano 84084, Italy
 ³ Department of Physics, University of California at Berkeley, Berkeley CA 94720, USA

1. Motivation

2. Problem formulation

3. Unfolding of the normal form

4. Summary

Motivation

- Mode interaction of a steady and two unsteady modes of a O(2) symmetric system.
 - Study of the successive bifurcations.
 - Existence of global bifurcations, e.g., robust heteroclinic cycles [1].
- 2. Applications:
 - Taylor Couette Flow (TCF)
 - Wake flow of axisymmetric objects (WFA) and in mixed convection (WFA-MC)
 - Axisymmetric rigid falling bodies (RFA) and rising bubble (RBA).

Motivation – Interaction between two linear stability modes (II)

The flow state $\mathbf{q} = [\mathbf{u}, p, T]$, is decomposed as

 $\mathbf{q} = \mathbf{Q}_0 + \operatorname{Re} \left[a_0(t) \mathrm{e}^{-im_0\theta} \hat{\mathbf{u}}_s \right] + \operatorname{Re} \left[a_1(t) \mathrm{e}^{-im_1\theta} \hat{\mathbf{u}}_{h,-1} + a_2(t) \mathrm{e}^{im_1\theta} \hat{\mathbf{u}}_{h,1} \right].$ (1)

Motivation – Interaction between two linear stability modes (II)

The flow state $\mathbf{q} = [\mathbf{u}, p, \mathbf{T}]$, is decomposed as

 $\mathbf{q} = \mathbf{Q}_0 + \operatorname{Re} \left[a_0(t) \mathrm{e}^{-im_0\theta} \hat{\mathbf{u}}_s \right] + \operatorname{Re} \left[a_1(t) \mathrm{e}^{-im_1\theta} \hat{\mathbf{u}}_{h,-1} + a_2(t) \mathrm{e}^{im_1\theta} \hat{\mathbf{u}}_{h,1} \right].$ (2)

Literature – Mode interaction in the Taylor–Couette flow

Figure 1: Phase portrait of the Taylor-Couette configuration. Courtesy of [4, 2, 5, 1]

Formulation

Governing equations

$$\mathbf{B} \frac{\partial \mathbf{q}}{\partial t} = \mathbf{F}(\mathbf{q}, \eta) \equiv \mathbf{L}\mathbf{q} + \mathbf{N}(\mathbf{q}, \mathbf{q}) + \mathbf{G}(\mathbf{q}, \eta), \qquad \text{in } \Omega, \\ \mathbf{D}_{bc} \mathbf{q}(\mathbf{x}) = \mathbf{q}_{\partial\Omega}, \qquad \text{on } \partial\Omega \\ \text{with } \mathbf{L}\mathbf{q} = \begin{pmatrix} -\nabla P \\ \nabla \cdot \mathbf{U} \\ 0 \end{pmatrix}, \quad \mathbf{N}(\mathbf{q}_1, \mathbf{q}_2) = -\begin{pmatrix} \mathbf{U}_1 \cdot \nabla \mathbf{U}_2 \\ 0 \\ \mathbf{U}_1 \cdot \nabla T \end{pmatrix} \qquad \text{in } \Omega, \\ \mathbf{G}(\mathbf{q}, \eta) = \begin{pmatrix} \frac{1}{\text{Re}} \nabla \cdot (\nabla \mathbf{U} + (\nabla \mathbf{U})^T) + \text{Ri} T \mathbf{e}_z \\ 0 \\ \frac{1}{\text{RePr}} \nabla^2 T \end{pmatrix} \qquad \text{in } \Omega, \\ \begin{pmatrix} \mathbf{q} \\ \mathbf{q}$$

The normal form reduction of the governing equations with the ansatz

$$\begin{aligned} \mathbf{q}(t,\tau) &= \mathbf{Q}_0 + \varepsilon \mathbf{q}_{(\varepsilon)}(t,\tau) + \varepsilon^2 \mathbf{q}_{(\varepsilon^2)}(t,\tau) + O(\varepsilon^3) \\ &\equiv \mathbf{Q}_0 + \operatorname{Re}(a_0(\tau)e^{-im_0\theta}\hat{\mathbf{q}}_0) \\ &+ \operatorname{Re}(a_1(\tau)e^{-i\omega t}e^{-im_1\theta}\hat{\mathbf{q}}_1 + a_2(\tau)e^{-i\omega t}e^{im_2\theta}\hat{\mathbf{q}}_2) \end{aligned}$$
(4)

where $\varepsilon \ll 1$ is a small parameter.

$$\varepsilon \mathbf{B} \frac{\partial \mathbf{q}_{(\varepsilon)}}{\partial t} + \varepsilon^2 \mathbf{B} \frac{\partial \mathbf{q}_{(\varepsilon^2)}}{\partial t} + \varepsilon^3 \big[\mathbf{B} \frac{\partial \mathbf{q}_{(\varepsilon^3)}}{\partial t} + \mathbf{B} \frac{\partial \mathbf{q}_{(\varepsilon)}}{\partial \tau} \big]$$
(5)

and the RHS respectively,

$$\mathbf{F}(\mathbf{q},\boldsymbol{\eta}) = \mathbf{F}_{(0)} + \varepsilon \mathbf{F}_{(\varepsilon)} + \varepsilon^2 \mathbf{F}_{(\varepsilon^2)} + \varepsilon^3 \mathbf{F}_{(\varepsilon^3)}.$$
 (6)

Normal form (complex form)

The normal form reduction of the governing equations with the ansatz

$$\mathbf{q}(t,\tau) = \mathbf{Q}_{0} + \varepsilon \mathbf{q}_{(\varepsilon)}(t,\tau) + \varepsilon^{2} \mathbf{q}_{(\varepsilon^{2})}(t,\tau) + O(\varepsilon^{3})$$

$$\equiv \mathbf{Q}_{0} + \operatorname{Re}(a_{0}(\tau)e^{-im_{0}\theta}\hat{\mathbf{q}}_{0}) + \operatorname{Re}(a_{1}(\tau)e^{-i\omega t}e^{-im_{1}\theta}\hat{\mathbf{q}}_{1} + a_{2}(\tau)e^{-i\omega t}e^{im_{2}\theta}\hat{\mathbf{q}}_{2})$$
(7)

Dynamics are then reduced to a six dimensional subspace with the symmetries

$$\Phi : (a_0, a_1, a_2) \to (a_0, a_1 e^{i\phi}, a_2 e^{i\phi}), \quad \kappa : (a_0, a_1, a_2) \to (\overline{a}_0, a_2, a_1)$$

$$R_\alpha : (a_0, a_1, a_2) \to (a_0 e^{i\alpha}, a_1 e^{i\alpha}, a_2 e^{-i\alpha})$$
(8)

$$\dot{a}_0 = \lambda_s a_0 + l_0 a_0 |a_0|^2 + l_1 (|a_1|^2 + |a_2|^2) a_0 + i l_2 (|a_2|^2 - |a_1|^2) a_0 + l_3 \overline{a}_0 \overline{a}_2 a_1$$
(9a)

$$\dot{a}_1 = (\lambda_h + i\omega_h)a_1 + (B|a_1|^2 + (A+B)|a_2|^2)a_1 + Ca_1|a_0|^2 + Da_0^2a_2$$
(9b)

Javier Sierra-Ausin (UPS-IMFT & UNISA)

Normal form (polar form)

However, it is more convenient to work with the normal form in its polar form $(a_j = r_j e^{i\phi_j})$ for j = 0, 1, 2, and the phase $\Psi = \phi_1 - \phi_2 - 2\phi_0$

$$\dot{r}_{0} = \begin{bmatrix} \lambda_{s} + l_{0}r_{0}^{2} + l_{1}(r_{1}^{2} + r_{2}^{2}) \end{bmatrix} r_{0} + l_{3}r_{0}r_{1}r_{2}\cos\Psi$$
(10a)

$$\dot{r}_{1} = \begin{bmatrix} \lambda_{h} + B_{r}r_{1}^{2} + (A_{r} + B_{r})r_{2}^{2} + C_{r}r_{0}^{2} \end{bmatrix}r_{1} + r_{0}^{2}r_{2}(D_{r}\cos\Psi + D_{i}\sin\Psi)$$
(10b)

$$\dot{r}_{2} = \begin{bmatrix} \lambda_{h} + B_{r}r_{2}^{2} + (A_{r} + B_{r})r_{1}^{2} + C_{r}r_{0}^{2} \end{bmatrix}r_{2} + r_{0}^{2}r_{1}(D_{r}\cos\Psi - D_{i}\sin\Psi)$$
(10c)

$$\Psi = (A_i - 2l_2)(r_2^2 - r_1^2) - 2l_3 r_1 r_2 \sin \Psi + r_0^2 D_i \cos \Psi \Big[\frac{r_2}{r_1} - \frac{r_1}{r_2} \Big] - r_0^2 D_r \sin \Psi \Big[\frac{r_2}{r_1} + \frac{r_1}{r_2} \Big]$$
(10d)

which allows us to reduce dynamics to a four dimensional subspace (slicing the two continuous symmetries, now discrete).

Javier Sierra-Ausin (UPS-IMFT & UNISA)

O(2) equivariant Steady-Hopf interaction ERCOFTAC SIG 33 (June 15 2022)

Normal form reduction (Order 0 & 1)

The zeroth order \mathbf{Q}_0 of the reduction procedure is the steady state equation evaluated at the threshold of instability, i.e. $\eta = \mathbf{0}$,

$$\begin{aligned}
\mathbf{0} &= \mathbf{F}(\mathbf{Q}_0, \mathbf{0}), \ \mathbf{x} \text{ in } \Omega, \\
\mathbf{D}_{bc} \mathbf{Q}_0(\mathbf{x}) &= \mathbf{Q}_{0,\partial\Omega}, \ \mathbf{x} \text{ on } \partial\Omega.
\end{aligned}$$
(11)

The first order solution $\mathbf{q}_{(\varepsilon)}(t,\tau)$ is composed of the eigenmodes of the linearized system

$$\mathbf{q}_{(\varepsilon)}(t,\tau) \equiv \operatorname{Re}\left(a_{0}(\tau)e^{-im_{0}\theta}\hat{\mathbf{q}}_{0}\right) + \operatorname{Re}\left(a_{1}(\tau)e^{-i\omega t}e^{-im_{1}\theta}\hat{\mathbf{q}}_{1} + a_{2}(\tau)e^{-i\omega t}e^{im_{2}\theta}\hat{\mathbf{q}}_{2}\right)$$
(12)

where the reflection symmetry of O(2) imposes $m_2 = -m_1$. Each term $\hat{\mathbf{q}}_{\ell}$ of the first order expansion is a solution of the following linear equation

$$\begin{aligned} \mathbf{J}_{(\omega_{\ell},m_{\ell})} \hat{\mathbf{q}}_{\ell} &= \left(i \omega_{\ell} \mathbf{B} - \frac{\partial \mathbf{F}}{\partial \mathbf{q}} |_{\mathbf{q} = \mathbf{Q}_{0}, \boldsymbol{\eta} = \mathbf{0}} \right) \hat{\mathbf{q}}_{\ell}, \ \mathbf{x} \text{ in } \Omega, \\ \mathbf{D}_{bc} \hat{\mathbf{q}}_{\ell}(\mathbf{x}) &= 0, \ \mathbf{x} \text{ on } \partial \Omega. \end{aligned}$$
 (13)

where
$$\frac{\partial \mathbf{F}}{\partial \mathbf{q}}|_{\mathbf{q}=\mathbf{Q}_0,\eta=\mathbf{0}}\hat{\mathbf{q}}_\ell = \mathbf{L}_{m_\ell}\hat{\mathbf{q}}_\ell + \mathbf{N}_{m_\ell}(\mathbf{Q}_0,\hat{\mathbf{q}}_\ell) + \mathbf{N}_{m_\ell}(\hat{\mathbf{q}}_\ell,\mathbf{Q}_0).$$

Javier Sierra-Ausin (UPS-IMFT & UNISA)

Normal form reduction (Order 2)

Non-linear second order terms in ε are

$$\begin{aligned} \mathbf{F}_{(\varepsilon^{2})} &\equiv \sum_{j,k=0}^{2} \left(a_{j} a_{k} \mathbf{N}(\hat{\mathbf{q}}_{j}, \hat{\mathbf{q}}_{k}) e^{-i(m_{j}+m_{k})\theta} e^{-i(\omega_{j}+\omega_{k})t} + \text{ c.c.} \right) \\ &+ \sum_{j,k=0}^{2} \left(a_{j} \overline{a}_{k} \mathbf{N}(\hat{\mathbf{q}}_{j}, \overline{\mathbf{q}}_{k}) e^{-i(m_{j}-m_{k})\theta} e^{-i(\omega_{j}-\omega_{k})t} + \text{ c.c.} \right) \\ &+ \sum_{\ell=0}^{2} \eta_{\ell} \mathbf{G}(\mathbf{Q}_{0}, \mathbf{e}_{\ell}), \end{aligned}$$
(14)

The second order term can be expanded as follows

$$\mathbf{q}_{(\varepsilon^2)} \equiv \sum_{\substack{j,k=0\\k\leq j}}^2 \left(a_j a_k \hat{\mathbf{q}}_{j,k} + a_j \overline{a}_k \hat{\mathbf{q}}_{j,-k} + \text{ c.c } \right) + \sum_{\ell=0}^2 \eta_\ell \mathbf{Q}_0^{(\eta_\ell)}, \tag{15}$$

Finally, second-order terms are computed by solving

$$\begin{aligned}
\mathbf{J}_{(\omega_{j}+\omega_{k},m_{j}+m_{k})}\hat{\mathbf{q}}_{j,k} &= \hat{\mathbf{F}}_{(\epsilon^{2})}^{(j,k)}, \\
\mathbf{J}_{(0,0)}\mathbf{Q}_{0}^{(\eta_{\ell})} &= \mathbf{G}(\mathbf{Q}_{0},\mathbf{e}_{\ell}).
\end{aligned}$$
(16)

Javier Sierra-Ausin (UPS-IMFT & UNISA)

O(2) equivariant Steady-Hopf interaction

Normal form reduction (Order 3)

The linear terms λ_s and λ_h are determined as follows

$$\lambda_{s} = \frac{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{0})} \rangle}{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{0} \rangle}, \ \lambda_{h} = \frac{\langle \hat{\mathbf{q}}_{1}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{1})} \rangle}{\langle \hat{\mathbf{q}}_{1}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{1} \rangle} = \frac{\langle \hat{\mathbf{q}}_{2}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{2})} \rangle}{\langle \hat{\mathbf{q}}_{2}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{2} \rangle}.$$
(17)

The real cubic coefficients l_i for i = 0, 1, 2, 3 are obtained as

$$l_{0} = \frac{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{0}|a_{0}|^{2})} \rangle}{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{0} \rangle}, \qquad l_{3} = \frac{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(\bar{a}_{0}a_{1}\bar{a}_{2})} \rangle}{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{0} \rangle}$$

$$l_{1} - il_{2} = \frac{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{0}|a_{1}|^{2})} \rangle}{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{0} \rangle}, \qquad l_{1} + il_{2} = \frac{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{0}|a_{2}|^{2})} \rangle}{\langle \hat{\mathbf{q}}_{0}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{0} \rangle}.$$

$$(18)$$

Finally, the complex coefficients A, B, C and D are computed as follows,

$$B = \frac{\langle \mathbf{q}_{1}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{1}|a_{1}|^{2})} \rangle}{\langle \hat{\mathbf{q}}_{1}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{1} \rangle}, \qquad A + B = \frac{\langle \mathbf{q}_{1}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{1}|a_{2}|^{2})} \rangle}{\langle \hat{\mathbf{q}}_{1}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{1} \rangle}, \qquad (19)$$
$$C = \frac{\langle \mathbf{q}_{1}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{1}|a_{0}|^{2})} \rangle}{\langle \hat{\mathbf{q}}_{1}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{1} \rangle}, \qquad D = \frac{\langle \mathbf{q}_{1}^{\dagger}, \hat{\mathbf{F}}_{(\epsilon^{3})}^{(a_{0}|a_{2}|)} \rangle}{\langle \hat{\mathbf{q}}_{1}^{\dagger}, \mathbf{B} \hat{\mathbf{q}}_{1} \rangle}.$$

Javier Sierra-Ausin (UPS-IMFT & UNISA)

Unfolding of the normal form

Name	Representative	Iso. group (complex)	Iso. group (polar)	Frequencies
Pure modes:				
TS	(0, 0, 0, nd)	$O(2) imes S^1$	$D_4 \rtimes \mathbb{Z}_2(\kappa)$	0
SS	$(r_a, 0, 0, nd)$	$\mathbb{Z}_2(\kappa) imes S^1$	$\mathbb{Z}_2(\kappa) imes \mathbb{Z}_2(\Phi_\pi)$	0
RW	$(0, r_a, 0, nd)$	$\widetilde{SO(2)}$	$\mathbb{Z}_4(R_{\pi/2}\Phi_{\pi/2})$	1
SW	$(0, r_a, r_a, nd)$	$\mathbb{Z}_2(\kappa) imes \mathbb{Z}_2(R_{\pi} \Phi_{\pi})$	$\mathbb{Z}_2(\kappa) imes \mathbb{Z}_2(R_\pi \Phi_\pi)$	1
Mixed modes:				
MM ₀	$(r_a, r_b, r_b, 0)$	$\mathbb{Z}_2(\kappa)$	$\mathbb{Z}_2(\kappa)$	1
MM_{π}	(r_a, r_b, r_b, π)	$\mathbb{Z}_2(\kappa \cdot R_{\pi}\Phi_{\pi})$	$\mathbb{Z}_2(\kappa \cdot R_{\pi}\Phi_{\pi})$	1
IMM	$(0, r_a, r_b, \Psi)$	$\mathbb{Z}_2(R_\pi\Phi_\pi)$	$\mathbb{Z}_2(R_\pi\Phi_\pi)$	1
Precessing waves:				
General	(r_a, r_b, r_c, Ψ)	1	1	2
Type A	(r_a, r_b, r_b, Ψ)	1	1	2
Type B	$(r_a, r_b, r_c, 0 \text{ or } \pi)$	1	1	2
Type C	$(r_a, r_b, 0, \Psi)$	1	1	2

Γ	Name	Name (TC)	Name (WFA)	
	TS	Taylor Couette Flow	Axisymmetric state	
	SS	Taylor Vortex Flow	Steady shedding	
Σ_{SS} Σ_{SW} Σ_{RW}	SW	Ribbon cells	Standing wave	
	RW	Spiral vortex	Spiral Shedding state	
	MM_0	Twisted vortices	Reflection Symmetry Preserving	
$\Sigma_{MM_0} \Sigma_{MM_{\pi}} \Sigma_{IMM}$	MM_{π}	Wavy vortices	Reflection Symmetry Breaking	
	IMM	Wavy Spirals	(-)	
	PrW	(-)	(-)	

Construction of the bifurcation diagram

Modulated bifurcations

Name	Representative	Isotropy group	Frequencies
$\widetilde{MM}_{0,\pi}$	$(r_a(t), r_b(t), r_b(t), 0 \text{ or } \pi)$	1	2
ĨMM	$(0, r_b, r_c, \Psi(t))$	1	2
PuW	$(r_a(t), r_b(t), r_c(t), \Psi(t))$	1	2
	with $\overline{r}_b = \overline{r}_c$ and $\overline{\sin \Psi} = 0$		
3-frequency waves: (3FW)			
General	$(r_a(t), r_b(t), r_c(t), \Psi(t))$	1	3
Type A	$(r_a(t), r_b(t), r_b(t), \Psi(t))$	1	3
	with $\overline{\sin\Psi} \neq 0$		
Type B	$(r_{a}(t), r_{b}(t), r_{c}(t), 0 \text{ or } \pi)$	1	3
	with $\overline{r}_b \neq \overline{r}_c$		
Type C	$(0, r_b(t), r_c(t), nd)$	1	3
	with $\overline{r}_b \neq \overline{r}_c$		
Type D	$(r_a(t), r_b(t), 0, \Psi(t))$	1	3
	with $\overline{\sin\Psi} \neq 0$		

The quasiperiodic state $\widetilde{MM}_{0,\pi}$ is known as Modulated Wavy Vortex Flow (MWVF) in the Taylor Couette problem.

Robust (asymptotically stable) heteroclinic cycles

Figure 2: Courtesy of [1]. Identified in the region of Wavy Spirals (IMM), near the boundary of Modulated Wavy Vortex ($\widetilde{MM}_{0,\pi}$). The physical mechanism is SSP [3]

Summary

Summary

- Study of the bifurcation scenario for the steady-Hopf mode interaction with O(2) symmetry.
- Applications to a large variety of flows, Taylor–Couette, wake axisymmetric flows, falling rigid bodies, etc.

Codes for steady-state continuation on parameters, time-stepping simulations, linear stability, normal form reduction ... are (or will be) available in

https: //gitlab.com/stabfem/StabFem

Questions?

Javier Sierra-Ausin (UPS-IMFT & UNISA)

References i

- Y. Bengana and L. S. Tuckerman.

Spirals and ribbons in counter-rotating taylor-couette flow: Frequencies from mean flows and heteroclinic orbits.

Physical Review Fluids, 4(4):044402, 2019.

P. Chossat and G. looss.

The Couette-Taylor Problem, volume 102. Springer Science & Business Media, 2012.

T. Dessup, L. S. Tuckerman, J. E. Wesfreid, D. Barkley, and A. P. Willis.

Self-sustaining process in taylor-couette flow. *Physical Review Fluids*, 3(12):123902, 2018.

S. Grossmann, D. Lohse, and C. Sun.
 High-reynolds number taylor-couette turbulence.
 Annual Review of Fluid Mechanics, 48(1):53–80, 2016.

E. Weisshaar, F. H. Busse, and M. Nagata. Twist vortices and their instabilities in the taylor-couette system.

Journal of fluid mechanics, 226:549-564, 1991.

Sphere

